Skip to main content

Advertisement

Log in

On the influence of etch pits in the overall dissolution rate of apatite basal sections

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Determination of efficiencies for particle detection plays a central role for proper estimation of reaction rates. If chemical etching is employed in the revelation of latent particle tracks in solid-state detectors, dissolution rates and etchable lengths are important factors governing the revelation and observation. In this work, the mask method, where a reference part of the sample is protected during dissolution, was employed to measure step heights in basal sections of apatite etched with a nitric acid, HNO\(_3\), solution at a concentration of 1.1 M and a temperature of 20 °C. We show a drastic increase in the etching velocity as the number of etch pits in the surface augments, in accordance with the dissolution stepwave model, where the outcrop of each etch pit generates a continuous sequence of stepwaves. The number of etch pits was varied by irradiation with neutrons and perpendicularly incident heavy ions. The size dependence of the etch-pit opening with etching duration for ion (200–300 MeV 152Sm and 238U) tracks was also investigated. There is no distinction for the etch pits between the different ions, and the dissolution seems to be governed by the opening velocity when a high number of etch pits are present in the surface. Measurements of the etchable lengths of these ion tracks show an increase in these lengths when samples are not pre-annealed before irradiation. We discuss the implications of these findings for fission-track modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams DM, Gardner IR (1974) Single-crystal vibrational spectra of apatite, vanadinite, and mimetite. J Chem Soc Dalton Trans 14:1505–1509

    Article  Google Scholar 

  • Alencar I, Guedes S, Jonckheere R, Trautmann C, Soares CJ, Moreira PAFP, Curvo EAC, Tello CA, Nakasuga WM, Dias ANC, Hadler JC (2012) Projected length annealing of etched 152Sm ion tracks in apatite. Nucl Instrum Meth Phys Res B 288:48–52

    Article  Google Scholar 

  • Baddiel CB, Berry EE (1966) Spectra structure correlations in hydroxy and fluorapatite. Spectrochim Acta 22:1407–1416

    Article  Google Scholar 

  • Barbarand J, Carter A, Wood I, Hurford T (2003a) Compositional and structural control of fission-track in apatite. Chem Geol 198:107–137

    Article  Google Scholar 

  • Barbarand J, Hurford T, Carter A (2003b) Variation in apatite fission-track length measurement: implications for thermal history modelling. Chem Geol 198:77–106

    Article  Google Scholar 

  • Berner RA, Sjöberg EL, Velbel MA, Krom MD (1979) Dissolution of pyroxenes and amphiboles during weathering. Science 207:1205–1206

    Article  Google Scholar 

  • Bhatnagar VM (1966) IR-spectra of fluorapatite and fluorchlorapatite. Experientia 23:10–12

    Article  Google Scholar 

  • Brantley SL, Crane SR, Crerar DA, Hellmann R, Stallard R (1986) Dissolution at dislocation etch pits in quartz. Geochim Cosmochim Acta 50:2349–2361

    Article  Google Scholar 

  • Buffeteau T, Desbat B, Eyquem D (1996) Attenuated total reflection Fourier transform infrared microspectroscopy: theory and application to polymer samples. Vib Spectrosc 11:29–36

    Article  Google Scholar 

  • Carlson WD, Donelick RA, Ketcham RA (1999) Variability of apatite fission-track annealing kinetics: I. Experimental results. Am Mineral 84:1213–1223

    Google Scholar 

  • Comodi P, Liu Y, Frezzotti ML (2001) Structural and vibrational behaviour of fluorapatite with pressure: II. In situ micro-Raman spectroscopic investigation. Phys Chem Miner 28:225–231

    Article  Google Scholar 

  • Crowley KD, Cameron M, McPherson BJ (1990) Annealing of etchable fission-track damage in F-, OH-, Cl- and Sr-apatite: 1. Systematics and preliminary interpretations. Nucl Tracks Radiat Meas 17:409–410

    Article  Google Scholar 

  • Curvo EAC, Jonckheere R, Guedes S, Iunes PJ, Tello CA, Hadler JC, Unterricker S, Ratschbacher L (2013) A comparison between neutron-fluence measurements using metal-activation monitors and standard glasses calibrated via thin uranium-fission monitors and via \(\eta\)q method. Radiat Meas 53–54:38–44

    Article  Google Scholar 

  • de Corte F, Van den haute P, de Wispelaere A (1991) Calibration of fission-track dating method: is Cu useful as an absolute thermal neutron fluence monitor? Chem Geol (Isot Geosci Sect) 86:187–194

    Article  Google Scholar 

  • de Corte F, Van den haute P, Bellemans F (1995) The use of uranium doped glasses in fission-track dating. Radiat Meas 25:511–516

    Article  Google Scholar 

  • Donelick RA (1993) Apatite etching characteristics versus chemical composition. Radiat Meas 21:604

    Google Scholar 

  • Donelick RA, Roden MK, Mooers JD, Carpenter BS, Miller DS (1990) Etchable length reduction of induced fission tracks in apatite at room temperature (~23 °C): crystallographic orientation effects and “initial” mean lengths. Int J Radiat Appl Instr Sect D 17:261–265

    Article  Google Scholar 

  • Enkelmann E, Jonckheere R, Wauschkuhn B (2005) Independent fission-track ages (\(\phi\)-ages) of proposed and accepted apatite age standards and a comparison of \(\phi\)-, \(Z\)-, \(\eta\)- and \(\eta _0\)-ages: implications for method calibration. Chem Geol 222:232–248

    Article  Google Scholar 

  • Fischer RB, Ring CE (1957) Quantitative infrared analysis of apatite mixtures. Anal Chem 29:431–434

    Article  Google Scholar 

  • Gleadow AJW, Duddy IR, Green PF, Lovering JF (1986) Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. Contrib Mineral Petrol 94:405–415

    Article  Google Scholar 

  • Gleadow AJW, Belton DX, Kohn BP, Brown RW (2002) Fission track dating of phosphate minerals and the thermochronology of apatite. Rev Miner Geochem 48:579–630

    Article  Google Scholar 

  • Green PF, Durrani A (1977) Annealing studies of tracks in crystals. Nucl Track Det 1:33–39

    Article  Google Scholar 

  • Green PF, Duddy IR, Gleadow AJW, Tingate PR, Laslett GM (1986) Thermal annealing of fission tracks in apatite: 1. A qualitative description. Chem Geol (Isot Geosci Sect) 59:237–253

    Article  Google Scholar 

  • Guedes S, Hadler JC, Iunes PJ, Paulo SR, Zuñiga A (2000) The spontaneous fission decay constant of 238U using SSNTD. J Radioanal Nucl Chem 245:441–442

    Article  Google Scholar 

  • Guedes S, Hadler JC, Iunes PJ, Burke AK, Kakazu MH, Sarkis JES, Paulo SR, Tello CA (2002) Determination of the 238U spontaneous fission decay constant without neutron irradiation. J Radioanal Nucl Chem 253:73–76

    Article  Google Scholar 

  • Guedes S, Hadler JC, Iunes PJ, Zuñiga A, Tello CA, Paulo SR (2003a) The use of the U(n, f) reaction dosimetry in the determination of the \(\lambda _{{\rm f}}\) value through fission-track techniques. Nucl Instrum Meth Phys Res A 496:215–221

    Article  Google Scholar 

  • Guedes S, Hadler JC, Sarkis JES, Oliveira KMG, Kakazu MH, Iunes PJ, Saiki M, Tello CA, Paulo SR (2003b) Spontaneous-fission decay constant of 238U measured by nuclear track techniques without neutron irradiation. J Radioanal Nucl Chem 258:117–122

    Article  Google Scholar 

  • Guedes S, Jonckheere R, Moreira PAFP, Hielscher R (2008) On the calibration of fission-track annealing models. Chem Geol 248:1–13

    Article  Google Scholar 

  • Guidry MW, Mackenzie FT (2003) Experimental study of igneous and sedimentary apatite dissolution: control of pH, distance from equilibrium, and temperature on dissolution rates. Geochim Cosmochim Acta 67:2949–2963

    Article  Google Scholar 

  • Hadler JC, Lattes CMG, Marques A, Serra DAB, Bigazzi G (1981) Measurement of the spontaneous-fission disintegration constant of 238U. Nucl Tracks 5:45–52

    Article  Google Scholar 

  • Hadler JC, Alencar I, Iunes PJ, Guedes S (2009a) Glass fission track analysis by AFM and SEM: inferring latent track structure through etched tracks. Radiat Meas 44:746–749

    Article  Google Scholar 

  • Hadler JC, Iunes PJ, Tello CA, Chemale F Jr, Kawashita K, Curvo EAC, Santos FGS, Gasparini TE, Moreira PAFP, Guedes S (2009b) Experimental study of a methodology for fission-track dating without neutron irradiation. Radiat Meas 44:955–957

    Article  Google Scholar 

  • Hasebe N, Barbarand J, Jarvis K, Carter A, Hurford AJ (2004) Apatite fission-track chronometry using laser ablation ICP-MS. Chem Geol 207:135–145

    Article  Google Scholar 

  • Ho JPY, Yip CWY, Koo VSY, Nikezic D, Yu KN (2002) Measurements of bulk etch rate of LR-115 with atomic force microscopy. Radiat Meas 35:571–573

    Article  Google Scholar 

  • Hunt JM (1996) Petroleum geochemistry and geology. In: Libes SM (ed) Introduction to marine biogeochemistry, chap 26. Elsevier, Amsterdam, pp 1–33

    Google Scholar 

  • Hurford AJ (1990a) International Union of Geological Sciences Subcommission on Geochronology recommendation for the standardization of fission track dating calibration and data reporting. Int J Radiat Appl Instr Sect D 17:233–236

    Article  Google Scholar 

  • Hurford AJ (1990b) Standardization of fission track dating calibration: recommendation by the Fission Track Working Group of the I.U.G.S. Subcomission on Geochronology. Chem Geol (Isot Geosci Sect) 80:171–178

    Article  Google Scholar 

  • Hurford AJ, Green PF (1982) A users’ guide to fission track dating calibration. Earth Planet Sci Lett 59:343–354

    Article  Google Scholar 

  • Hurford AJ, Green PF (1983) The zeta age calibration of fission-track dating. Isot Geosci 1:285–317

    Google Scholar 

  • Issler DR (1996) Optimizing time step size for apatite fission track annealing models. Comp Geosci 22:67–74

    Article  Google Scholar 

  • Iunes PJ, Hadler JC, Bigazzi G, Tello CA, Guedes S, Paulo SR (2002) Durango apatite fission-track dating using length-based age corrections and neutron fluence measurements by natural thorium thin films and natural U-doped glasses calibrated through natural uranium thin films. Chem Geol 187:201–211

    Article  Google Scholar 

  • Iwano H, Ksuya M, Danhara T, Yamashita T, Tagami T (1993) Track counting efficiency and unetchable track range in apatite. Nucl Tracks Radiat Meas 21:513–517

    Article  Google Scholar 

  • Jonckheere R (2003) On the densities of etchable fission tracks in a mineral and co-irradiated external detector with reference to fission-track dating of minerals. Chem Geol 200:41–58

    Article  Google Scholar 

  • Jonckheere R, Van den haute P (1996) Observations on the geometry of etched fission tracks in apatite: implications for models of track revelation. Am Mineral 81:1476–1493

    Google Scholar 

  • Jonckheere R, Van den haute P (1998) On the frequency distributions per unit area of the dimensions of fission tracks revealed in an internal and external mineral surface and in the surface of an external detector. Radiat Meas 29:135–143

    Article  Google Scholar 

  • Jonckheere R, Van den haute P (1999) On the frequency distributions per unit area of the projected and etchable lengths of surface-intersecting fission tracks: influences of track revelation, observation and measurement. Radiat Meas 30:155–179

    Article  Google Scholar 

  • Jonckheere R, Van den haute P (2002) On the efficiency of fission-track counts in an internal and external apatite surface and in a muscovite external detector. Radiat Meas 35:29–40

    Article  Google Scholar 

  • Ketcham RA, Donelick RA, Carlson WD (1999) Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales. Am Mineral 84:1235–1255

    Google Scholar 

  • Kravitz LC, Kingsley JD, Elkin EL (1968) Raman and infrared studies of coupled PO\(_4^{-3}\) vibrations. J Chem Phys 49:4600–4610

    Article  Google Scholar 

  • Lal D, Muralli AV, Rajan RS, Tamhane AS, Lorin JC, Pellas P (1968) Techniques for proper revelation and viewing of etch-tracks in meteoritic and terrestrial minerals. Earth Planet Sci Lett 1968:111–119

    Article  Google Scholar 

  • Lasaga AC, Lüttge A (2001) Variation of crystal dissolution rate based on a dissolution stepwave model. Science 291:2400–2404

    Article  Google Scholar 

  • Lasaga AC, Lüttge A (2003) A model for crystal dissolution. Eur J Mineral 15:603–615

    Article  Google Scholar 

  • Laslett GM, Galbraith RF (1996) Statistical modelling of thermal annealing of fission tracks in apatite. Geochim Cosmochim Acta 60:5117–5131

    Article  Google Scholar 

  • Leroy G, Leroy N, Penel G, Rey C, Lafforgue P, Bres E (2000) Polarized micro-Raman study of fluorapatite single crystals. Appl Spectrosc 54:1521–1527

    Article  Google Scholar 

  • Li W, Lang M, Gleadow AJW, Zdorovets MV, Ewing RC (2012) Thermal annealing of unetched fission tracks in apatite. Earth Planet Sci Lett 321:121–127

    Article  Google Scholar 

  • Liu J, Glasmacher UA, Lang M, Trautmann C, Voss KO, Neumann R, Wagner GA, Miletich R (2008) Raman spectroscopy of apatite irradiated with swift heavy ions with and without simultaneous exertion of high pressure. Appl Phys A 91:17–22

    Article  Google Scholar 

  • Lüttge A, Bolton EM, Lasaga AC (1999) An interferometric study of the dissolution kinetics of anorthite: the role of reactive surface area. Am J Sci 299:652–678

    Article  Google Scholar 

  • Lüttge A, Winkler U, Lasaga AC (2003) Interferometric study of the dolomite dissolution: a new conceptual model for mineral dissolution. Geochim Cosmochim Acta 67:1099–1166

    Article  Google Scholar 

  • MacInnis IN, Brantley SL (1992) The role of dislocations and surface morphology in calcite dissolution. Geochim Cosmochim Acta 56:1113–1126

    Article  Google Scholar 

  • O’Shea DC, Bartlett ML, Young RA (1974) Compositional analysis of apatite with laser-Raman spectroscopy: (OH, F, Cl) apatites. Archs Oral Biol 19:995–1008

    Article  Google Scholar 

  • Penel G, Leroy G, Rey C, Sombret B, Huvenne JP, Bres E (1997) Infrared and Raman microspectrometry study of fluor-fluor-hydroxy and hydroxy-apatite powders. J Mater Sci Mater Med 8:271–276

    Article  Google Scholar 

  • Shepherd JH, Shepherd DV, Best SM (2012) Substituted hydroxyapatites for bone repair. J Mater Sci Mater Med 23:2335–2347

    Article  Google Scholar 

  • Singh S, Singh D, Sandhu AS, Virk HS (1986) A study of etched track anisotropy in apatite. Mineral J 13:75–85

    Article  Google Scholar 

  • Soares CJ, Guedes S, Tello CA, Lixandrão Filho AL, Osório AM, Alencar I, Dias ANC, Hadler JC (2013) Further investigation of the initial fission-track length and geometry factor in apatite fission-track thermochronology. Am Mineral 98:1381–1392

    Article  Google Scholar 

  • Soares CJ, Guedes S, Curvo EAC, Hadler JC, Jonckheere R, Tello CA, Lixandrão Filho AL, Siqueira PTD, Madi Filho T (2014a) Recalibration of U-doped standard glasses through uranium thin film for neutron-fluence measurements. J Radioanal Nucl Chem 302:17–26

    Article  Google Scholar 

  • Soares CJ, Guedes S, Hadler JC, Mertz-Kraus R, Zack T, Iunes PJ (2014b) Novel calibration for LA-ICP-MS-based fission-track thermochronology. Phys Chem Miner 41:65–73

    Article  Google Scholar 

  • Sobel ER, Seward D (2010) Influence of etching conditions on apatite fission-track etch pit diameter. Chem Geol 271:59–69

    Article  Google Scholar 

  • Tagami T, O’Sullivan PB (2005) Fundamentals of fission-track thermochronology. Rev Miner Geochem 58:19–47

    Article  Google Scholar 

  • Tello CA, Palissari R, Hadler JC, Iunes PJ, Guedes S, Curvo EAC, Paulo SR (2006) Annealing experiments on induced fission tracks in apatite: measurements of horizontal-confined track lengths and track densities in basal sections and randomly oriented grains. Am Mineral 91:252–260

    Article  Google Scholar 

  • Temple PA, Hathaway CE (1973) Multiphonon Raman spectrum of silicon. Phys Rev B 7:3685–3697

    Article  Google Scholar 

  • Tisserand R, Rebetez M, Grivet M, Bouffard S, Benyagoub A, Levesque F, Carpéna J (2004) Comparative amorphization quantification of two apatitic materials irradiated with heavy ions using XRD and RBS results. Nucl Instrum Meth Phys Res B 215:129–136

    Article  Google Scholar 

  • Van den haute P, Jonckheere R, de Corte F (1988) Thermal neutron fluence determination for fission-track dating with metal activation monitors: a re-investigation. Chem Geol (Isot Geosci Sect) 73:233–244

    Article  Google Scholar 

  • Wagner GA, Van den haute P (1992) Fission-track dating. Kluwer, Dordrecht

    Book  Google Scholar 

  • Weber WJ (2000) Models and mechanisms of irradiation-induced amorphization in ceramics. Nucl Instrum Meth Phys Res B 166–167:98–106

    Article  Google Scholar 

  • Weber WJ, Ewing RC, Meldrum A (1997) The kinetics of alpha-decay-induced amorphization in zircon and apatite containing weapons-grade plutonium or other actinides. J Nucl Mater 250:147–155

    Article  Google Scholar 

  • Weikusat C, Glasmacher UA, Schuster B, Trautmann C, Miletich R, Neumann R (2011) Raman study of apatite amorphised with swift heavy ions under various irradiation conditions. Phys Chem Miner 38:293–303

    Article  Google Scholar 

  • Yasuda N, Yamamoto M, Miyahara N, Ishigure N, Kanai T, Ogura K (1998) Measurements of bulk etch rate of CR-39 with atomic force microscopy. Nucl Instrum Meth Phys Res B 142:111–116

    Article  Google Scholar 

  • Yoshioka T, Tsuruta T, Iwano H, Danhara T (2005) Spontaneous fission decay constant of 238U determined by SSNTD method using CR-39 and DAP plates. Nucl Instrum Meth Phys Res A 555:386–395

    Article  Google Scholar 

  • Ziegler JF, Ziegler MD, Biersack JP (2010) SRIM—the stopping and range of ions in matter (2010). Nucl Instrum Meth Phys Res B 268:1818–1823

    Article  Google Scholar 

Download references

Acknowledgments

The authors are in debt with Dr. R. Jonckheere for stimulating discussions about the experiments. Grateful acknowledges are given to Mr. A.A.G.V. Zuben and Dr. F. Vallini for their assistance in the photo-resist lithography, to Dr. C. Trautmann and the GSI staff for the ion irradiations and to Dr. P.R.P. Coelho and the IPEN staff for the neutron irradiation. The results presented here are part of a Ph.D. thesis (I.A.) which was financially supported by Brazilian National Council for Scientific and Technological Development (CNPq) through projects 141705/2008-6 and 201847/2009-4. Comments and criticisms from two unknown reviewers helped to improve the quality of the original manuscript. This work is dedicated in the memory of Dr. P.J. Iunes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Alencar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alencar, I., Guedes, S., Palissari, R. et al. On the influence of etch pits in the overall dissolution rate of apatite basal sections. Phys Chem Minerals 42, 629–640 (2015). https://doi.org/10.1007/s00269-015-0749-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-015-0749-6

Keywords

Navigation