Skip to main content

Advertisement

Log in

Equation of state of a synthetic ulvöspinel, (Fe1.94Ti0.03)Ti1.00O4.00, at ambient temperature

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Using a diamond-anvil cell and synchrotron X-ray diffraction, the compressional behavior of a synthetic ulvöspinel (Fe1.94Ti0.03)Ti1.00O4.00 has been investigated up to about 7.05 GPa at 300 K. The pressure–volume data fitted to the second-order Birch–Murnaghan equation of state yield an isothermal bulk modulus (K T ) of 147(4) GPa (K′ T fixed as 4). This value is slightly larger than that previously determined by an ultrasonic pulse echo method (121(2) GPa; Syono et al., J Phys Soc Jpn 31:471–476, 1971), but substantially smaller than that recently determined by a synchrotron X-ray diffraction technique (251(3) GPa; Yamanaka et al., Phys Rev B 80:134120, 2009; Am Mineral 98:736–744, 2013). Combined with the K T of magnetite (Fe3O4; ~182(3) GPa), our finding suggests that the bulk modulus of the solid solutions Fe3−x Ti x O4 (0 ≤ x ≤ 1) along the join magnetite–ulvöspinel decreases by ~20 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akimoto S, Syono Y (1967) High-pressure decomposition for some titanate spinels. J Chem Phys 47:1813–1817

    Article  Google Scholar 

  • Andersen DJ, Lindsley DH (1988) Internally consistent solution models for Fe-Mg-Mn-Ti oxides: Fe-Ti oxides. Am Mineral 73:714–726

    Google Scholar 

  • Anderson DL, Anderson OL (1970) The bulk modulus-volume relationship for oxides. J Geophys Res 75:3494–3500

    Article  Google Scholar 

  • Anderson OL, Nafe JE (1965) The bulk modulus-volume relationship for oxide compounds and related geophysical problems. J Geophys Res 70:3951–3963

    Article  Google Scholar 

  • Angel RJ (2000) Equation of state. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry. Reviews in Mineralogy and Geochemistry, vol 41. Mineralogical Society of America, Chantilly, pp 35–60

  • Antao SM, Hassan I, Crichton WA, Parise JB (2005) Effects of high pressure and high temperature on cation ordering in magnesioferrite, MgFe2O4, using in situ synchrotron X-ray powder diffraction up to 1430 K and 6 GPa. Am Mineral 90:1500–1505

    Article  Google Scholar 

  • Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev 71:809–924

    Article  Google Scholar 

  • Bosi F, Hålenius U, Skogby H (2008) Stoichiometry of synthetic ulvöspinel single crystals. Am Mineral 93:1312–1316

    Article  Google Scholar 

  • Bosi F, Hålenius U, Skogby H (2009) Crystal chemistry of the magnetite–ulvöspinel series. Am Mineral 94:181–189

    Article  Google Scholar 

  • Buddington AF, Lindsley DH (1964) Iron–titanium oxide minerals and synthetic equivalents. J Petrol 5:310–357

    Article  Google Scholar 

  • Cameron EN (1971) Opaque minerals in certain lunar rocks from Apollo 12. Proc Second Lunar Sci Conf 1:193–206

    Google Scholar 

  • Chang L, Chen Z, Liu X, Wang H (2013) Expansivity and compressibility of wadeite-type K2Si4O9 determined by in situ high T/P experiments, and their implication. Phys Chem Mineral 40:29–40

    Article  Google Scholar 

  • Chopelas A, Hofmeister AM (1991) Vibrational spectroscopy of aluminate spinels at 1 atm and of MgAl2O4 to over 200 kbar. Phys Chem Mineral 18:279–293

    Google Scholar 

  • Diego Gatta G, Kantor I, Boffa Ballaran T, Dubrovinsky L, McCammon C (2007) Effect of non-hydrostatic conditions on the elastic behaviour of magnetite: an in situ single-crystal X-ray diffraction study. Phys Chem Mineral 34:627–635

    Article  Google Scholar 

  • Diego Gatta G, Bosi F, McIntyre GJ, Hålenius U (2014) Static positional disorder in ulvöspinel: a single-crystal neutron diffraction study. Am Mineral 99:255–260

    Article  Google Scholar 

  • Fei Y (1995) Thermal expansion. In: Ahrens TJ (eds) Mineral physics and crystallography: a handbook of physical constants. American Geophysical Union, Washington, DC, Shelf 2, pp 29–44

  • Fleet ME (1981) The structure of magnetite. Acta Crystallogr B 37:917–920

    Article  Google Scholar 

  • Fleet ME, Liu X, Shieh SR (2010) Structural change in lead fluorapatite at high pressure. Phys Chem Mineral 37:1–9

    Article  Google Scholar 

  • Forster RH, Hall EO (1965) A neutron and X-ray diffraction study of ulvöspinel, Fe2TiO4. Acta Crystallogr 18:859–862

    Article  Google Scholar 

  • Haavik C, Stølen S, Fjellvåg H, Hanfland M, Häusermann D (2000) Equation of state of magnetite and its high-pressure modification: thermodynamics of the Fe-O system at high pressure. Am Mineral 85:514–523

    Google Scholar 

  • Hammersley J (1996) Fit2D report. Europe Synchrotron Radiation Facility, Grenoble, France

    Google Scholar 

  • He Q, Liu X, Hu X, Deng L, Chen Z, Li B, Fei Y (2012) Solid solutions between lead fluorapatite and lead fluorvanadate apatite: compressibility determined by using a diamond-anvil cell coupled with synchrotron X-ray diffraction. Phys Chem Mineral 39:219–226

    Article  Google Scholar 

  • He Q, Liu X, Li B, Deng L, Chen Z, Liu X, Wang H (2013) Expansivity and compressibility of strontium and barium fluorapatite: significance of the M-site cations. Phys Chem Mineral 40:349–360

    Article  Google Scholar 

  • Hofmeister AM, Mao HK (2001) Evaluation of shear moduli and other properties of silicates with the spinel structure from IR spectroscopy. Am Mineral 86:622–639

    Google Scholar 

  • Ishikawa Y, Sato S, Syono Y (1971) Neutron and magnetic studies of a single crystal of Fe2TiO4. J Phys Soc Jpn 31:452–460

    Article  Google Scholar 

  • Klotz S, Chervin JC, Munsch P, Le Marchand G (2009) Hydrostatic limits of 11 pressure transmitting media. J Phys D Appl Phys 42:075413

    Article  Google Scholar 

  • Kyono A, Ahart M, Yamanaka T, Gramsch S, Mao HK, Hemley RJ (2011) High-pressure Raman spectroscopic studies of ulvöspinel Fe2TiO4. Am Mineral 96:1193–1198

    Article  Google Scholar 

  • Liebermann RC, Jackson I, Ringwood AE (1977) Elasticity and phase equilibria of spinel disproportionation reactions. Geophys J R astr Soc 50:553–586

    Article  Google Scholar 

  • Lilova KI, Pearce CI, Gorski C, Rosso KM, Navrotsky A (2012) Thermodynamics of the magnetite-ulvöspinel (Fe3O4–Fe2TiO4) solid solution. Am Mineral 97:1330–1338

    Article  Google Scholar 

  • Liu X, Prewitt CT (1990) High-temperature X-ray diffraction study of Co3O4: transition from normal to disordered spinel. Phys Chem Mineral 17:168–172

    Google Scholar 

  • Liu X, Shieh SR, Fleet ME, Akhmetov A (2008) High-pressure study on lead fluorapatite. Am Mineral 93:1581–1584

    Article  Google Scholar 

  • Liu X, Shieh SR, Fleet ME, Zhang L (2009) Compressibility of a natural kyanite to 17.5 GPa. Prog Nat Sci 19:1281–1286

    Article  Google Scholar 

  • Mao HK, Bell PM, Shaner JW, Steinberg DJ (1978) Specific volume measurements of Cu, Mo, Pt, and Au and calibration of ruby R1 fluorescence pressure gauge for 0.006 to 1 Mbar. J Appl Phys 49:3276–3283

    Article  Google Scholar 

  • O’Neill HStC, Pownceby MI, Wall VJ (1988) Ilmenite-rutile-iron and ulvöspinel-ilmenite-iron equilibria and the thermochemistry of ilmenite (FeTiO3) and ulvöspinel (Fe2TiO4). Geochim Cosmochim Acta 52:2065–2072

    Article  Google Scholar 

  • O’Neill HStC, Redfern SAT, Kesson S, Short S (2003) An in situ neutron diffraction study of cation disordering in synthetic qandilite Mg2TiO4 at high temperatures. Am Mineral 88:860–865

    Google Scholar 

  • Ôno K, Chandler L, Ito A (1968) Mössbauer study of the ulvöspinel, Fe2TiO4. J Phys Soc Jpn 25:174–176

    Article  Google Scholar 

  • Reichmann HJ, Jacobsen SD (2004) High-pressure elasticity of a natural magnetite crystal. Am Mineral 89:1061–1066

    Google Scholar 

  • Rozenberg GKh, Amiel Y, Xu WM, Pasternak MP, Jeanloz R, Hanfland M, Taylor RD (2007) Structural characterization of temperature- and pressure-induced inverse↔normal spinel transformation in magnetite. Phys Rev B 75:020102(R)

    Article  Google Scholar 

  • Sedler IK, Feenstra A, Peters T (1994) An X-ray powder diffraction study of synthetic (Fe, Mn)2TiO4 spinel. Eur J Mineral 6:873–885

    Article  Google Scholar 

  • Spencer K, Lindsley DH (1981) A solution model for coexisting iron-titanium oxides. Am Mineral 66:1189–1201

    Google Scholar 

  • Syono Y, Fukai Y, Ishikawa Y (1971) Anomalous elastic properties of Fe2TiO4. J Phys Soc Jpn 31:471–476

    Article  Google Scholar 

  • Taylor RW (1964) Phase equilibria in the system FeO–Fe2O3–TiO2 at 1300 °C. Am Mineral 49:1016–1030

    Google Scholar 

  • Tronche EJ, van Parker Kan M, de Vrise J, Wang Y, Sanehira T, Li J, Chen B, Gao L, Klemme S, McCammon CA, van Westrenen W (2010) The thermal equation of state FeTiO3 ilmenite based on in situ X-ray diffraction at high pressures and temperatures. Am Mineral 95:1708–1716

    Article  Google Scholar 

  • Wang Z, O’Neill HSC, Lazor P, Saxena SK (2002) High pressure Raman spectroscopic study of spinel MgCr2O4. J Phys Chem Solids 63:2057–2061

    Article  Google Scholar 

  • Wang Z, Schiferl D, Zhao Y, O’Neill H St C (2003) High pressure Raman spectroscopy of spinel-type ferrite ZnFe2O4. J Phys Chem Solids 64:2517–2523

    Article  Google Scholar 

  • Wang S, Liu X, Fei Y, He Q, Wang H (2012) In situ high-temperature powder X-ray diffraction study on the spinel solid solutions (Mg1−xMnx)Cr2O4. Phys Chem Mineral 39:189–198

    Article  Google Scholar 

  • Wechsler BA, Prewitt CT (1984) Crystal structure of ilmenite (FeTiO3) at high temperature and at high pressure. Am Mineral 69:176–185

    Google Scholar 

  • Wechsler BA, Lindsley DH, Prewitt CT (1984) Crystal structure and cation distribution in titanomagnetites (Fe3−xTixO4). Am Mineral 69:754–770

    Google Scholar 

  • Wu Y, Wu X, Qin S (2012) Pressure-induced phase transition of Fe2TiO4: X-ray diffraction and Mössbauer spectroscopy. J Solid State Chem 185:72–75

    Article  Google Scholar 

  • Yamanaka T, Mine T, Asogawa S, Nakamoto Y (2009) Jahn-Teller transition of Fe2TiO4 observed by maximum entropy method at high pressure and low temperature. Phys Rev B 80:134120

    Article  Google Scholar 

  • Yamanaka T, Kyono A, Nakamoto Y, Meng Y, Kharlamova S, Struzhkin VV, Mao HK (2013) High-pressure phase transitions of Fe3−xTixO4 solid solution up to 60 GPa correlated with electronic spin transition. Am Mineral 98:736–744

    Article  Google Scholar 

  • Yong W, Botis S, Shieh SR, Shi W, Withers AC (2012) Pressure-induced phase transition study of magnesiochromite (MgCr2O4) by Raman spectroscopy and X-ray diffraction. Phys Earth Planet Inter 196–197:75–82

    Article  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for their constructive comments on our manuscript. We also thank Dr. T. Tsuchiya for processing our manuscript. The in situ X-ray diffraction experiments were carried out at the National Synchrotron Light Source (NSLS), which is supported by the U.S. Department of Energy, Division of Materials Sciences and Division of Chemical Sciences under Contract No. DE-AC02-76CH00016. The operation of X17C is supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences. This work is financially supported by the Natural Science Foundation of China (Grant No. 41273072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Z., Liu, X., Shieh, S.R. et al. Equation of state of a synthetic ulvöspinel, (Fe1.94Ti0.03)Ti1.00O4.00, at ambient temperature. Phys Chem Minerals 42, 171–177 (2015). https://doi.org/10.1007/s00269-014-0704-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-014-0704-y

Keywords

Navigation