Skip to main content
Log in

Growth of magnesio-aluminate spinel in thin-film geometry: in situ monitoring using synchrotron X-ray diffraction and thermodynamic model

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Polycrystalline spinel layers were grown experimentally at the contacts between single-crystal corundum substrates and initially amorphous, then polycrystalline MgO thin films. The growth behavior of the spinel layers was monitored in situ using synchrotron X-ray diffraction. The change in the integrated intensity of the 111 spinel Bragg peak was correlated with the thickness of the layer as determined from ex situ TEM characterization of the run products. At \(900\,^{\circ }\hbox {C},\) a transition from linear growth, corresponding to interface reaction control, to parabolic growth, corresponding to diffusion control, occurred at a layer thickness of less than 10 nm. At 1,000 \(^{\circ }\hbox {C},\) growth was largely linear up to a layer thickness in excess of 300 nm. A thermodynamic model was applied to extract the kinetic parameters characterizing interface motion and long-range diffusion from this growth behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abart R, Petrishcheva E, Fischer FD, Svoboda J (2009) Thermodynamic model for diffusion controlled reaction rim growth in a binary system: application to the forsterite-enstatite-quartz system. Am J Sci 309:114–131. doi:10.2475/02.2009.02

    Article  Google Scholar 

  • Abart R, Petrishcheva E (2011) Thermodynamic model for reaction rim growth: interface reaction and diffusion control. Am J Sci 311:517–527. doi:10.2475/06.2011.02

    Article  Google Scholar 

  • Apel D, Klaus M, Genzel C, Balzar D (2011) Rietveld refinement of energy-dispersive synchrotron measurements. Z Kristallogr 226:934–943. doi:10.1524/zkri.2011.1436

    Article  Google Scholar 

  • Carter RE (1961) Mechanism of solid-state reaction between magnesium oxide and aluminum oxide and between magnesium oxide and ferric oxide. J Am Ceram Soc 44:116–120

    Article  Google Scholar 

  • Carter CB, Schmalzried H (1985) The growth of spinel into Al2O3. Philos Mag A 52:207–224

    Article  Google Scholar 

  • Daneu N, Rečnik A, Yamazaki T, Dolenec T (2007) Structure and chemistry of (111) twin boundaries in MgAl2O4 spinel crystals from mogok. Phys Chem Minerals 34:233–247. doi:10.1007/s00269-007-0142-1

    Article  Google Scholar 

  • Deal BE, Grove AS (1965) General relationship for thermal oxidation of silicon. J Appl Phys 36:3770–3778. doi:10.1063/1.1713945

    Article  Google Scholar 

  • De Groot SR, Mazur S (1984) Non-equilibrium thermodynamics. Dover Publications, New York

    Google Scholar 

  • Dohmen R, Becker H-W, Meissner E, Etzel T, Chakraborty S (2002) Production of silicate thin films using pulsed laser deposition (PLD) and applications to studies in mineral kinetics. Eur J Mineral 14:1155–1168

    Article  Google Scholar 

  • Duckwitz CA, Schmalzried H (1971) Reaktionen zwischen festen Oxiden unter Einschluß von Gastransport. Z Phys Chem Neue Fol 76:173–193

    Article  Google Scholar 

  • Dybkov VI (1986) Reaction diffusion in heterogeneous binary systems. Part 2 growth of the chemical compound layers at the interface between two elementary substances: two compound layers. J Mater Sci 21:3085–3090

    Article  Google Scholar 

  • Eason R (2007) Pulsed laser deposition of thin films: applications-led growth of functional materials. Wiley, New York

    Google Scholar 

  • Erko A, Packe I, Hellwig C, Fieber-Erdmann M, Pawlizki O, Veldkamp M, Gudat W (2000) KMC-2: the new X-ray beamline at BESSY II. AIP Conf Proc 521:415–418

    Article  Google Scholar 

  • Farrell HH, Gilmer GH, Suenaga M (1975) Diffusion mechanisms for growth of \(\text{Nb}_3\text{Sn}\) intermetallic layers. Thin Solid Films 25:253–264

    Article  Google Scholar 

  • Fisher GW (1978) Rate laws in metamorphism. Geochim Cosmochim Ac 42:1035–1050

    Article  Google Scholar 

  • Fultz B, Howe J (2008) Transmission electron microscopy and diffractometry of materials. Springer, Berlin

    Google Scholar 

  • Gardés E, Wunder B, Wirth R, Heinrich W (2011) Growth of multilayered polycrystalline reaction rims in the \(\text{MgO-SiO}_2\) system, part i: experiments. Contrib Mineral Petr 161:1–12. doi:10.1007/s00410-010-0517-z

    Article  Google Scholar 

  • Genzel C, Denks IA, Klaus M (2006) The materials science beamline EDDI for energy-dispersive analysis of subsurface residual stress gradients. Mater Sci Forum 524–525:193–198. doi:10.4028/www.scientific.net/MSF.524-525.193

    Article  Google Scholar 

  • Genzel C, Denks IA, Gibmeier J, Klaus M, Wagener G (2007) The materials science synchrotron beamline EDDI for energy-dispersive diffraction analysis. Nucl Instrum Meth A 578:23–33. doi:10.1016/j.nima.2007.05.209

    Article  Google Scholar 

  • Gösele U, Tu KN (1982) Growth kinetics of planar binary diffusion couples: “thinfilm case” versus “bulk cases”. J Appl Phys 53:3252–3260. doi:10.1063/1.331028

    Article  Google Scholar 

  • Götze LC, Abart R, Rybacki E, Keller LM, Petrishcheva E, Dresen G (2010) Reaction rim growth in the system \(\text{MgO-Al}_2\text{O}_3\text{-SiO}_2\) under uniaxial stress. Miner Petrol 99:263–277. doi:10.1007/s00710-009-0080-3

    Article  Google Scholar 

  • Hallstedt B (1992) Thermodynamic assessment of the system \(\text{MgO-Al}_2\text{O}_3\). J Am Ceram Soc 75:1497–1507

    Article  Google Scholar 

  • He T, Becker KD (1997) An optical in-situ study of a reacting spinel crystal. Solid State Ionics 101–103:337–342

    Article  Google Scholar 

  • Hesse D, Senz S, Scholz R, Werner P, Heydenreich J (1994) Structure and morphology of the reaction fronts during the formation of \(\text{MgAl}_2\text{O}_4\) thin films by solid state reaction between r-cut sapphire substrates and MgO films. Interface Sci 2:221–237

    Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic dataset for phases of petrological interest. J Metamorph Geol 16:309–344. doi:10.1111/j.1525-1314.1998.00140.x

    Article  Google Scholar 

  • Hornstra J (1960) Dislocations, stacking faults and twins in the spinel structure. J Phys Chem Solids 15:311–323

    Article  Google Scholar 

  • Jeřábek P, Abart R, Rybacki E, Habler G (2014) Microstructure and texture evolution during growth of magnesio-aluminate spinel at corundum–periclase interfaces under uniaxial load: the effect of loading on reaction progress. Am J Sci (in press)

  • Joachim B, Gardés E, Abart R, Heinrich W (2011) Experimental growth of åkermanite reaction rims between wollastonite and monticellite: evidence for volume diffusion control. Contrib Mineral Petrol 161:389–399. doi:10.1007/s00410-010-0538-7

    Article  Google Scholar 

  • Keller LM, Götze LC, Rybacki E, Dresen G, Abart R (2010) Enhancement of solid-state reaction rates by non-hydrostatic stress effects on polycrystalline diffusion kinetics. Am Min 95:1399–1407. doi:10.2138/am.2010.3372

    Article  Google Scholar 

  • Koch E, Wagner C (1936) Formation of \(\text{Ag}_2\text{HgI}_4\) from AgI and \(\text{HgI}_2\) by reaction in the solid state. Z Phys Chem B34:317–321

    Google Scholar 

  • Kotula PG, Johnson MT, Carter CB (1998) Thin-film reactions. Z Phys Chem 206:73–99

    Article  Google Scholar 

  • Lee WE, Lagerlof KPD (1985) Structural and electron diffraction data for sapphire \((\alpha \text{-Al}_2\text{O}_3)\). J Electron Microsc 2:247–258

    Article  Google Scholar 

  • Li DX, Pirouz P, Heuer AH, Yadavalli S, Flynn CP (1992) A high-resolution electron microscopy study of \(\text{MgO/Al}_2\text{O}_3\) interfaces and \(\text{MgAl}_2\text{O}_4\) spinel formation. Philos Mag A 65:403–425

    Article  Google Scholar 

  • Liu C-M, Chen J-C, Chen C-J (2005) The growth of an epitaxial Mg-Al spinel layer on sapphire by solid-state reactions. J Cryst Growth 285:275–283. doi:10.1016/j.jcrysgro.2005.08.023

    Article  Google Scholar 

  • Milke R, Wiedenbeck M, Heinrich W (2001) Grain boundary diffusion of Si, Mg, and O in enstatite reaction rims: a SIMS study using isotopically doped reactants. Contrib Mineral Petr 142:15–26

    Article  Google Scholar 

  • Milke R, Wirth R (2003) The formation of columnar fiber texture in wollastonite rims by induced stress and implications for diffusion-controlled corona growth. Phys Chem Minerals 30:230–242

    Article  Google Scholar 

  • Milke R, Dohmen R, Becker H-W, Wirth R (2007) Growth kinetics of enstatite reaction rims studied on nano-scale, part I: methodology, microscopic observations and the role of water. Contrib Mineral Petr 154:519–533

    Article  Google Scholar 

  • Navias L (1961) Preparation and properties of spinel made by vapor transport and diffusion in the system MgO-Al2O3. J Am Ceram Soc 44:434–446

    Article  Google Scholar 

  • Onsager L (1931) Reciprocal relations in irreversible processes. I. Phys Rev 37:405–426. doi:10.1103/PhysRev.37.405

    Article  Google Scholar 

  • Pin S, Suardelli M, D’Acapito F, Spinolo G, Zema M, Tarantino SC, Barba L, Ghigna P (2013) Role of interfacial energy and crystallographic orientation on the mechanism of the \(\text{ZnO} + \text{Al}_2\text{O}_3 \longrightarrow \text{ZnAl}_2\text{O}_4\) solid-state reaction: ii. reactivity of films deposited onto the sapphire (001) face. J Phys Chem C 117:6113–6119

    Article  Google Scholar 

  • Resel R, Tamas E, Sonderegger B, Hofbauer P, Keckes J (2003) A heating stage up to 1173 K for X-ray diffraction studies in the whole orientation space. J Appl Crystallogr 36:80–85

    Article  Google Scholar 

  • Rossi RC, Fulrath RM (1963) Epitaxial growth of spinel by reaction in the solid state. J Am Ceram Soc 46:145–149

    Article  Google Scholar 

  • Schmalzried H (1974) Solid–state reactions between oxides. In: Seltzer MS, Jaffee RI (eds) Defects and transport in oxides. Plenum Press, New York, pp 83–108

    Chapter  Google Scholar 

  • Schmalzried H (1981) Solid–state reactions. Verlag Chemie, Weinheim

    Google Scholar 

  • Stampe PAS, Bullock M, Tucker WP, Kennedy RJ (1999) Growth of MgO thin films on m-, a-, c- and r-plane sapphire by laser ablation. J Phys D Appl Phys 32:1778–1787

    Article  Google Scholar 

  • Wang F, Miller S, Wördenweber R (1993) Large-area epitaxial MgO buffer layers on sapphire substrates for Y-Ba-Cu-O film deposition. Thin Solid Films 232:232–236

    Article  Google Scholar 

  • Watson EB, Price JD (2002) Kinetics of the reaction MgO + \(\text{Al}_2\text{O}_3 \longrightarrow \text{MgAl}_2\text{O}_4\) and Al-Mg interdiffusion in spinel at \(1200\text{-}2000^{\circ}\text{C}\) and 1.0 to 4.0 GPa. Geochim Cosmochim Ac 66:2123–2138. doi:10.1016/S0016-7037(02)00827-X

    Article  Google Scholar 

  • Whitney WP II, Stubican VS (1971) Interdiffusion studies in the system \(\text{MgO-Al}_2\text{O}_3\). J Phys Chem Solids 32:305–312

    Article  Google Scholar 

  • Wirth R (2004) Focused ion beam (FIB): a novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur J Mineral 16:863–876

    Article  Google Scholar 

  • Wirth R (2009) Focused ion beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem Geol 261:217–229

    Article  Google Scholar 

  • Zhang P, Debroy T, Seetharaman S (1996) Interdiffusion in the \(\text{MgO-Al}_2\text{O}_3\) spinel with or without some dopants. Metall Mater Trans A 27A:2105–2114

    Article  Google Scholar 

Download references

Acknowledgments

The EDDI beamline scientists M. Klaus and C. Genzel are thanked for the assistance, and R. Gunder is acknowledged for helping out during the in situ experiments. A. Schreiber and S. Gehrmann from the GFZ are acknowledged for the FIB extraction of TEM foils and substrate preparation, respectively. Two anonymous reviewers are thanked for providing valuable comments. This work was funded by the Deutsche Forschungsgemeinschaft, projects SCHO 670/9-1 and AB 314/2-1, both in the framework of the research group FOR 741.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Götze.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Götze, L.C., Abart, R., Milke, R. et al. Growth of magnesio-aluminate spinel in thin-film geometry: in situ monitoring using synchrotron X-ray diffraction and thermodynamic model. Phys Chem Minerals 41, 681–693 (2014). https://doi.org/10.1007/s00269-014-0682-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-014-0682-0

Keywords

Navigation