Skip to main content
Log in

Polarized electronic absorption spectra of colourless chalcocyanite, CuSO4, with a survey on crystal fields in Cu2+ minerals

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Polarized electronic absorption spectra of colourless chalcocyanite, CuSO4, have been measured using microscope-spectrometric techniques. The spectra are characterized by a structured and clearly polarized band system in the near-infrared spectral range with components centred at 11,720, 10,545, 9,100, and 7,320 cm−1, which have been assigned to crystal field dd transitions of Cu2+ cations in pseudo-tetragonally elongated CuO6 polyhedra with point symmetry C i (\(\bar{1}\)). The polarization behaviour is interpreted based on a D 2(C 2″) pseudo-symmetry. Crystal field calculations were performed for the actual triclinic point symmetry by applying the Superposition Model of crystal fields, as well as in terms of a ‘classic’ pseudo-tetragonal crystal field approach yielding the parameters Dq (eq) = 910, Dt = 395, and Ds = 1,336 cm−1, corresponding to a cubically averaged Dq cub = 679 cm−1. A comparative survey on crystal fields in Cu2+ minerals shows that the low overall crystal field strength in chalcocyanite, combined with a comparatively weak pseudo-tetragonal splitting of energy levels, is responsible for its unique colourless appearance among oxygen-based Cu2+ minerals. The weak crystal field in CuSO4 can be related to the lower position of the SO4 2− anion compared to, e.g. the H2O molecule in the spectrochemical series of ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrut M, Wildner M, Rudowicz CZ (2004) Optical absorption spectroscopy in geosciences. Part II: quantitative aspects of crystal fields. In: Beran A, Libowitzky E (eds) Spectroscopic methods in mineralogy. EMU notes in mineralogy, vol 6. Eötvös University Press, Budapest, pp 145–188

    Google Scholar 

  • Bacon GE, Titterton DH (1975) Neutron-diffraction studies of CuSO4·5H2O and CuSO4·5D2O. Z Kristallogr 141:330–341

    Article  Google Scholar 

  • Billing DE, Hathaway BJ, Nicholls P (1969) Polarisations of the copper(II) and uranyl electronic spectra of meta-zeunerite single crystals. J Chem Soc A 1969:316–319

    Article  Google Scholar 

  • Chandrasekhar AV, Venkataramanaiah M, Ravikumar RVSSN, Reddy BJ, Reddy YP (1997) Electronic spectra of pseudomalachite and olivenite. Indian J Pure Appl Phys 35:71–72

    Google Scholar 

  • Chang YM, Rudowicz C, Yeung YY (1994) Crystal field analysis of the 3dN ions at low symmetry sites including the “imaginary” terms. Comput Phys 8:583–588

    Article  Google Scholar 

  • Clark MG, Burns RG (1967) Electronic spectra of Cu2+ and Fe2+ square planar co-ordinated by oxygen in BaXSi4O10. J Chem Soc A 1967:1034–1038

    Article  Google Scholar 

  • Diaz J, Farach HA, Poole CP (1971) An electron spin resonance and optical study of turquoise. Am Mineral 56:773–781

    Google Scholar 

  • Ford RJ, Hitchman MA (1979) Single crystal electronic and EPR spectra of CaCuSi4O10, a synthetic silicate containing copper(II) in a four-coordinate, planar ligand environment. Inorg Chim Acta 33:L167–L170

    Article  Google Scholar 

  • Hawthorne FC, Ferguson RB (1975) Refinement of the crystal structure of kröhnkite. Acta Crystallogr B31:1753–1755

    Article  Google Scholar 

  • Hitchman MA, Waite TD (1976) Electronic spectrum of the Cu(H2O) 2+6 ion. Inorg Chem 15:2150–2154

    Article  Google Scholar 

  • Holmes OG, McClure DS (1957) Optical spectra of hydrated ions of the transition metals. J Chem Phys 26:1686–1694

    Article  Google Scholar 

  • Jørgensen CK (1954) Studies of absorption spectra. III. Absorption bands as Gaussian error curves. Acta Chem Scand 8:1495–1501

    Article  Google Scholar 

  • Jørgensen CK (1971) Modern aspects of ligand field theory. North-Holland, Amsterdam

    Google Scholar 

  • Kokkoros PA, Rentzeperis PJ (1958) The crystal structure of the anhydrous sulphates of copper and zinc. Acta Crystallogr 11:361–364

    Article  Google Scholar 

  • Lakshman SVJ, Reddy BJ (1973) Optical absorption spectra of Cu2+ in chalcanthite and malachite. Can Mineral 12:207–210

    Google Scholar 

  • Langer K (1988) UV to NIR spectra of silicate minerals obtained by microscope spectrometry and their use in mineral thermodynamics and kinetics. In: Salje EKH (ed) Physical properties and thermodynamic behaviour of minerals. Reidel, Dordrecht, pp 639–685

    Chapter  Google Scholar 

  • Langer K, Lattard D (1984) Mn3+ in garnets II: optical absorption spectra of blythite-bearing synthetic calderites, \({\text{Mn}}_{3}^{{2 + [8]}} \left( {{\text{Fe}}_{{{\text{1-x}}}}^{{{\text{3+}}}} {\text{Mn}}_\text{x}^{{3 + }} } \right)_{2}^{{[6]}} \left[ {{\text{SiO}}_{{\text{4}}} } \right]_{3}\). N Jb Miner Abh 149:129–141

    Google Scholar 

  • Leavitt RP (1982) On the role of certain rotational invariants in crystal field theory. J Chem Phys 77:1661–1663

    Article  Google Scholar 

  • Lever ABP (1984) Inorganic electronic spectroscopy, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Newman DJ (1971) Theory of lanthanide crystal fields. Adv Phys 20:197–256

    Article  Google Scholar 

  • Newman DJ, Ng B (1989) The superposition model of crystal fields. Rep Prog Phys 52:699–763

    Article  Google Scholar 

  • Newman DJ, Ng B (2000) Crystal field handbook. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Newnham RE, Santoro RP (1967) Magnetic and optical properties of dioptase. Phys Stat Sol 19:K87–K90

    Article  Google Scholar 

  • Ramanaiah MV, Ravikumar RVSSN, Srinivasulu G, Reddy BJ, Rao PS (1996) Detailed spectroscopic studies on cornetite from southern Shaba, Zaire. Ferroelectrics 175:175–182

    Article  Google Scholar 

  • Reddy BJ, Sarma KBN (1981) Absorption spectra of Cu2+ in azurite. Solid State Comm 38:547–549

    Article  Google Scholar 

  • Reddy KM, Jacob AS, Reddy BJ (1986) EPR and optical spectra of Cu2+ in dioptase. Ferroelec Lett 6:103–112

    Article  Google Scholar 

  • Reddy KM, Jacob AS, Reddy BJ, Reddy YP (1987) Optical absorption spectra of Cu2+ in brochantite. Phys Stat Sol B 139:K145–K150

    Article  Google Scholar 

  • Reddy SN, Ravikumar RVSSN, Reddy BJ, Rao PS (1995) Optical and EPR spectra of libethenite mineral. Ferroelectrics 166:55–62

    Article  Google Scholar 

  • Reddy BJ, Frost RL, Weier ML, Martens WN (2006) Ultraviolet-visible, near infrared and mid infrared reflectance spectroscopy of turquoise. J Near Infrared Spectrosc 14:241–250

    Article  Google Scholar 

  • Redhammer GJ, Koll L, Bernroider M, Tippelt G, Amthauer G, Roth G (2007) Co2+–Cu2+ substitution in bieberite solid-solution series, (Co1−xCux)SO4·7H2O, 0.00 ≤ x ≤ 0.46: synthesis, single-crystal structure analysis, and optical spectroscopy. Am Mineral 92:532–545

    Article  Google Scholar 

  • Sarma KBN, Reddy BJ, Lakshman SVJ (1982) Absorption spectra of Cu2+ in shattuckite and plancheite. Phys Lett 92A:305–308

    Article  Google Scholar 

  • Schläfer HL, Gliemann G (1967) Einführung in die Ligandenfeldtheorie. Akademische Verlagsgesellschaft, Frankfurt/Main

    Google Scholar 

  • Sharma KBN, Moorthy LR, Reddy BJ, Vedanand S (1988) EPR and electronic absorption spectra of copper bearing turquoise mineral. Phys Lett A 132:293–297

    Article  Google Scholar 

  • Vedanand S, Reddy BJ, Reddy YP (1991) Spectroscopic investigations on stringhamite Ca[Cu(SiO4)](H2O). Solid State Comm 77:231–234

    Article  Google Scholar 

  • Wan C, Ghose S, Rossman GR (1978) Guildite, a layer structure with a ferric hydroxy-sulphate chain and its optical absorption spectra. Am Mineral 63:478–483

    Google Scholar 

  • Wildner M (1998) Beiträge zur Kristallchemie von Sauerstoffsalzen der Übergangsmetalle mit 3d3 (Cr3+, Mn4+) und 3d7 (Co2+) Elektronenkonfiguration unter besonderer Berücksichtigung der Korrelation von strukturellen Details mit UV–VIS-spektroskopischen Daten. University Vienna, Habilitation

    Google Scholar 

  • Wildner M, Giester G (1988) Crystal structure refinements of synthetic chalcocyanite (CuSO4) and zincosite (ZnSO4). Mineral Petrol 39:201–209

    Article  Google Scholar 

  • Wildner M, Beran A, Koller F (2013) Spectroscopic characterisation and crystal field calculations of varicoloured kyanites from Loliondo, Tanzania. Mineral Petrol 107:289–310

    Article  Google Scholar 

  • Yeung YY, Newman DJ (1986) Superposition-model analyses for the Cr3+ 4A2 ground state. Phys Rev B 34:2258–2265

    Article  Google Scholar 

  • Zhang H, Lin C, Ma Z, Yang Z, Zhang E (1984) Magnetic properties, characteristic spectra and colors of turquoise. Geochemistry 3:322–332

    Google Scholar 

Download references

Acknowledgments

The authors thank Y. Y. Yeung (Hong Kong) for providing a modified copy of his HCFLDN2 crystal field program. Valuable comments by two anonymous reviewers helped to improve the manuscript and are gratefully acknowledged. Many thanks are also due to M. Rieder for his careful and patient editorial handling of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Wildner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wildner, M., Giester, G., Kersten, M. et al. Polarized electronic absorption spectra of colourless chalcocyanite, CuSO4, with a survey on crystal fields in Cu2+ minerals. Phys Chem Minerals 41, 669–680 (2014). https://doi.org/10.1007/s00269-014-0681-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-014-0681-1

Keywords

Navigation