Skip to main content
Log in

Perioperative Outcomes of Melanoma Patients Undergoing Surgery After Receiving Immunotherapy or Targeted Therapy

  • Original Scientific Report
  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Background

Traditional chemotherapy agents adversely affect wound healing and need to be held prior to or after surgery. Immune checkpoint inhibitors (ICIs) and targeted agents are now standard of care for the several treatment cancers. We hypothesize that ICI and targeted therapy do not have similar adverse effects on perioperative outcomes.

Methods

We performed a review of melanoma patients undergoing surgery at an academic hospital between 2011 and 2019. All patients received ICI or targeted therapy ≤ 60 days prior to surgery, including palliative procedures. Preoperative performance status was assessed using Eastern Cooperative Oncology Group score and American Society of Anesthesiologists Classification System. Thirty-day complications were classified by Clavien–Dindo grade. No statistical comparisons were performed.

Results

Of 63 patients included in the analysis, 29 (46%) patients received ICI and 34 (54%) received targeted therapy with median of 14 days (IQR 5–27 days) between the last preoperative dose and day of surgery (ICI, median 18 days [IQR 13–34.5]; targeted therapy, median 7 days [IQR 3–22.25]). There were no perioperative mortalities. Among patients treated with ICI, 22 patients (76%) had no complications. Four patients had wound infections (2 readmitted), 1 had reoperation (hematoma) and 2 readmitted for other reasons (fever; volvulus). Among patients treated with targeted therapy, 25 patients (74%) had no complications. Seven patients had wound infections (none readmitted), 1 had reoperation (flap failure) and 1 had dehiscence (not treated).

Conclusions

Patients undergoing treatment with ICI or targeted therapies can safely undergo surgery without substantially increased risk of serious intraoperative and postoperative complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Schadendorf D, Hodi FS, Robert C et al (2015) Pooled analysis of long-term survival data from Phase II and Phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 33:1889–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hao C, Tian J, Liu H et al (2017) Efficacy and safety of anti-PD-1 and anti-PD-1 combined with anti-CTLA-4 immunotherapy to advanced melanoma: a systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 96:e7325

    Article  CAS  Google Scholar 

  3. Buchbinder EI, Desai A (2016) CTLA-4 and PD-1 pathways: similarities, differences, and Implications of Their Inhibition. Am J Clin Oncol 39:98–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ott PA, Hodi FS, Robert C (2013) CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res 19:5300–5309

    Article  CAS  PubMed  Google Scholar 

  5. Peggs KS, Quezada SA, Chambers CA et al (2009) Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med 206:1717–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Long GV, Menzies AM, Nagrial AM et al (2011) Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol 29:1239–1246

    Article  PubMed  Google Scholar 

  7. Wellbrock C, Hurlstone A (2010) BRAF as therapeutic target in melanoma. Biochem Pharmacol 80:561–567

    Article  CAS  PubMed  Google Scholar 

  8. Eroglu Z, Ribas A (2016) Combination therapy with BRAF and MEK inhibitors for melanoma: latest evidence and place in therapy. Ther Adv Med Oncol 8:48–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alvarez JGB, Otterson GA (2019) Agents to treat BRAF-mutant lung cancer. Drugs Context 8:212566

    PubMed  PubMed Central  Google Scholar 

  10. Keung EZ, Wargo JA (2019) The current landscape of immune checkpoint inhibition for solid malignancies. Surg Oncol Clin N Am 28:369–386

    Article  PubMed  Google Scholar 

  11. Van Cutsem E, Huijberts S, Grothey A et al (2019) Binimetinib, encorafenib, and cetuximab triplet therapy for patients with BRAF V600E-mutant metastatic colorectal cancer: safety lead-in results from the Phase III BEACON colorectal cancer study. J Clin Oncol 37:1460–1469

    Article  PubMed  PubMed Central  Google Scholar 

  12. Seebacher NA, Stacy AE, Porter GM, Merlot AM (2019) Clinical development of targeted and immune based anti-cancer therapies. J Exp Clin Cancer Res 38:156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Coit DG, Thompson JA, Albertini MR et al (2019) Cutaneous Melanoma, version 2.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 17(4):367–402

    Article  PubMed  Google Scholar 

  14. Dummer R, Garbe C, Thompson JA et al (2006) Randomized dose-escalation study evaluating peginterferon alfa-2a in patients with metastatic malignant melanoma. J Clin Oncol 24:1188–1194

    Article  CAS  PubMed  Google Scholar 

  15. Hauschild A, Gogas H, Tarhini A et al (2008) Practical guidelines for the management of interferon-alpha-2b side effects in patients receiving adjuvant treatment for melanoma: expert opinion. Cancer 112:982–994

    Article  CAS  PubMed  Google Scholar 

  16. Middleton MR, Grob JJ, Aaronson N et al (2000) Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol 18:158–166

    Article  CAS  PubMed  Google Scholar 

  17. Atkins MB, Lotze MT, Dutcher JP et al (1999) High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17:2105–2116

    Article  CAS  PubMed  Google Scholar 

  18. Naidoo J, Page DB, Li BT et al (2015) Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol 26:2375–2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Welsh SJ, Corrie PG (2015) Management of BRAF and MEK inhibitor toxicities in patients with metastatic melanoma. Ther Adv Med Oncol 7:122–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anforth R, Fernandez-Penas P, Long GV (2013) Cutaneous toxicities of RAF inhibitors. Lancet Oncol 14:e11–18

    Article  CAS  PubMed  Google Scholar 

  21. Erinjeri JP, Fong AJ, Kemeny NE et al (2011) Timing of administration of bevacizumab chemotherapy affects wound healing after chest wall port placement. Cancer 117:1296–1301

    Article  CAS  PubMed  Google Scholar 

  22. Ihemelandu C, Levine EA, Aklilu M et al (2013) Optimal timing of systemic therapy in resectable colorectal liver metastases. Am Surg 79:414–421

    PubMed  PubMed Central  Google Scholar 

  23. Zawacki WJ, Walker TG, DeVasher E et al (2009) Wound dehiscence or failure to heal following venous access port placement in patients receiving bevacizumab therapy. J Vasc Interv Radiol 20:624–627 quiz 571

    Article  PubMed  Google Scholar 

  24. Scappaticci FA, Fehrenbacher L, Cartwright T et al (2005) Surgical wound healing complications in metastatic colorectal cancer patients treated with bevacizumab. J Surg Oncol 91:173–180

    Article  CAS  PubMed  Google Scholar 

  25. Elias AW, Kasi PM, Stauffer JA et al (2017) The feasibility and safety of surgery in patients receiving immune checkpoint inhibitors: a retrospective study. Front Oncol 7:121

    Article  PubMed  PubMed Central  Google Scholar 

  26. von Elm E, Altman DG, Egger M et al (2007) The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370:1453–1457

    Article  Google Scholar 

  27. Oken MM, Creech RH, Tormey DC et al (1982) Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol 5:649–655

    Article  CAS  PubMed  Google Scholar 

  28. ASA Physical Status Classification System (2014). American Society of Anesthesiologists

  29. Young J, Badgery-Parker T, Dobbins T et al (2015) Comparison of ECOG/WHO performance status and ASA score as a measure of functional status. J Pain Symptom Manag 49:258–264

    Article  Google Scholar 

  30. Chou WC, Liu KH, Lu CH et al (2016) To operate or not: prediction of 3-month postoperative mortality in geriatric cancer patients. J Cancer 7:14–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hopkins TJ, Raghunathan K, Barbeito A et al (2016) Associations between ASA physical status and postoperative mortality at 48 h: a contemporary dataset analysis compared to a historical cohort. Perioper Med (Lond) 5:29

    Article  Google Scholar 

  32. Dindo D, Demartines N, Clavien PA (2004) Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 240:205–213

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gyorki DE, Yuan J, Mu Z et al (2013) Immunological insights from patients undergoing surgery on ipilimumab for metastatic melanoma. Ann Surg Oncol 20:3106–3111

    Article  PubMed  PubMed Central  Google Scholar 

  34. Puza CJ, Bressler ES, Terando AM et al (2019) The emerging role of surgery for patients with advanced melanoma treated with immunotherapy. J Surg Res 236:209–215

    Article  PubMed  Google Scholar 

  35. Morton DL, Cochran AJ, Thompson JF et al (2005) Sentinel node biopsy for early-stage melanoma: accuracy and morbidity in MSLT-I, an international multicenter trial. Ann Surg 242:302–311 discussion 311-303

    PubMed  PubMed Central  Google Scholar 

  36. Stuiver MM, Westerduin E, ter Meulen S et al (2014) Surgical wound complications after groin dissection in melanoma patients—A historical cohort study and risk factor analysis. Eur J Surg Oncol 40:1284–1290

    Article  CAS  PubMed  Google Scholar 

  37. Glarner CE, Greenblatt DY, Rettammel RJ et al (2013) Wound complications after inguinal lymph node dissection for melanoma: is ACS NSQIP adequate? Ann Surg Oncol 20:2049–2055

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mansel RE, Fallowfield L, Kissin M et al (2006) Randomized multicenter trial of sentinel node biopsy versus standard axillary treatment in operable breast cancer: the ALMANAC Trial. J Natl Cancer Inst 98:599–609

    Article  PubMed  Google Scholar 

  39. Lucci A, McCall LM, Beitsch PD et al (2007) Surgical complications associated with sentinel lymph node dissection (SLND) plus axillary lymph node dissection compared with SLND alone in the American College of Surgeons Oncology Group Trial Z0011. J Clin Oncol 25:3657–3663

    Article  PubMed  Google Scholar 

  40. Blank CU, Rozeman EA, Fanchi LF et al (2018) Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat Med 24:1655–1661

    Article  CAS  PubMed  Google Scholar 

  41. Tarhini A, Lin Y, Lin H et al (2018) Neoadjuvant ipilimumab (3 mg/kg or 10 mg/kg) and high dose IFN-alpha2b in locally/regionally advanced melanoma: safety, efficacy and impact on T-cell repertoire. J Immunother Cancer 6:112

    Article  PubMed  PubMed Central  Google Scholar 

  42. Amaria RN, Reddy SM, Tawbi HA et al (2018) Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat Med 24:1649–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rozeman EA, Menzies AM, van Akkooi ACJ et al (2019) Identification of the optimal combination dosing schedule of neoadjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma (OpACIN-neo): a multicentre, phase 2, randomised, controlled trial. Lancet Oncol 20:948–960

    Article  CAS  PubMed  Google Scholar 

  44. Sloot S, Zager JS, Kudchadkar RR et al (2016) BRAF inhibition for advanced locoregional BRAF V600E mutant melanoma: a potential neoadjuvant strategy. Melanoma Res 26:83–87

    Article  CAS  PubMed  Google Scholar 

  45. Amaria RN, Prieto PA, Tetzlaff MT et al (2018) Neoadjuvant plus adjuvant dabrafenib and trametinib versus standard of care in patients with high-risk, surgically resectable melanoma: a single-centre, open-label, randomised, phase 2 trial. Lancet Oncol 19:181–193

    Article  CAS  PubMed  Google Scholar 

  46. Long GV, Saw RPM, Lo S et al (2019) Neoadjuvant dabrafenib combined with trametinib for resectable, stage IIIB-C, BRAF(V600) mutation-positive melanoma (NeoCombi): a single-arm, open-label, single-centre, phase 2 trial. Lancet Oncol 20:961–971

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Zeynep Eroglu has advisory board relationships with Array and Regeneron. She has received research funding from Novartis. Nikhil I. Khushalani has advisory board relationships with Bristol-Myers Squibb, EMD Serano, HUYA Bioscience International, Genentech and Regeneron. Joseph Markowitz has advisory board relationships with Array. He has also received research funding from Morphogenesis. Vernon K. Sondak has advisory board relationships with Merck, Bristol-Myers Squibb, Regeneron and Novartis and serves on Data Safety Monitoring Boards for Array, Bristol-Myers Squibb, Novartis, Polynoma and Pfizer. Jonathan S. Zager has advisory board relationships with Merck and Array. He is a member of the speaker’s bureau for Array. He also receives research funding from Amgen, Delcath Systems, Philogen, Provectus and Novartis. He consults Amgen, Delcath Systems and Philogen. He is also a member of the speaker’s bureau for Amgen and SunPharma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sephalie Y. Patel.

Ethics declarations

Conflict of interest

James Sun, Dennis A. Kirichenko, Joyce L. Chung, Michael J. Carr, Jane L. Messina and Sephalie Y. Patel declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Kirichenko, D.A., Chung, J.L. et al. Perioperative Outcomes of Melanoma Patients Undergoing Surgery After Receiving Immunotherapy or Targeted Therapy. World J Surg 44, 1283–1293 (2020). https://doi.org/10.1007/s00268-019-05314-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-019-05314-2

Navigation