Skip to main content
Log in

Computed Tomography-Based Assessment of Abdominal Adiposity Changes and Their Impact on Metabolic Alterations Following Bariatric Surgery

  • Original Scientific Report
  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Background

The aim of this study was to evaluate the effects of surgically induced weight loss on the abdominal adipose tissue depots and the metabolic profile in morbidly obese (MO) patients.

Methods

The study was performed with a semi-automated quantification of adipose tissue compartments on single-slice abdominal CT series before surgery, 6 and 12 months after bariatric surgery. Thirty-eight MO patients with mean age of 35.7 ± 10.1 years and mean body mass index (BMI) of 43.6 ± 6.5 kg/m2 were studied (20 patients underwent gastric banding and 18 patients underwent sleeve gastrectomy). Anthropometric measurements, metabolic and inflammatory parameters were analyzed in each patient.

Results

Markedly decreased levels of total abdominal adipose tissue, abdominal subcutaneous adipose tissue (AbSAT) and visceral adipose tissue (VAT) at 6 and 12 months were noted in comparison to the preoperative values. The total % reduction of VAT was significant higher in comparison to the total % reduction of AbSAT at 12 months after bariatric surgery (P < 0.01) with the mean ratio of AbSAT/VAT to increase from 4.1 ± 1.7 preoperatively to 6.2 ± 3.1 at 12 months postoperatively (P < 0.001). In addition, high-sensitivity C-reactive protein (hsCRP) decreased significantly with weight loss after bariatric surgery and the total abdominal lipid loss was related to the decrease in hsCRP.

Conclusions

Significant changes in abdominal lipid deposition occurred in MO patients 6 and 12 months after bariatric surgery. The changes were significantly, correlated with the magnitude of BMI loss. The fat redistribution may contribute to the improvements in metabolic abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wang Y, Rimm EB, Stampfer MJ et al (2005) Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am J Clin Nutr 81:555–563

    CAS  PubMed  Google Scholar 

  2. Després JP, Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 14:881–887

    Article  Google Scholar 

  3. Fox CS, Massaro JM, Hoffmann U et al (2007) Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 3:39–48

    Article  Google Scholar 

  4. Matsuzawa Y (2008) The role of fat topology in the risk of disease. Int J Obes (Lond) 32:S83–S92

    Article  CAS  Google Scholar 

  5. Busetto L, Tregnaghi A, Bussolotto M et al (2000) Visceral fat loss evaluated by total body magnetic resonance imaging in obese women operated with laparoscopic adjustable silicone gastric banding. Int J Obes Relat Metab Disord 24:60–69

    Article  CAS  PubMed  Google Scholar 

  6. Heath ML, Kow L, Slavotinek JP et al (2009) Abdominal adiposity and liver fat content 3 and 12 months after gastric banding surgery. Metabolism 58:753–758

    Article  CAS  PubMed  Google Scholar 

  7. Pontiroli AE, Pizzocri P, Librenti MC et al (2002) Laparoscopic adjustable gastric banding for the treatment of morbid (grade 3) obesity and its metabolic complications: a three-year study. J Clin Endocrinol Metab 87:3555–3561

    Article  PubMed  Google Scholar 

  8. Weiss R, Appelbaum L, Schweiger C et al (2009) Short-term dynamics and metabolic impact of abdominal fat depots after bariatric surgery. Diabetes Care 32:1910–1915

    Article  PubMed Central  PubMed  Google Scholar 

  9. Carroll JF, Franks SF, Smith AB et al (2009) Visceral adipose tissue loss and insulin resistance 6 months after laparoscopic gastric banding surgery: a preliminary study. Obes Surg 19:47–55

    Article  PubMed  Google Scholar 

  10. Marantos G, Daskalakis M, Karkavitsas N et al (2011) Changes in metabolic profile and adipoinsular axis in morbidly obese premenopausal females treated with restrictive bariatric surgery. World J Surg 35:2022–2030. doi:10.1007/s00268-011-1165-9

    Article  PubMed  Google Scholar 

  11. Nishida C, Ko GT, Kumanyika S (2010) Body fat distribution and noncommunicable diseases in populations: overview of the 2008 WHO Expert Consultation on Waist Circumference and Waist-Hip Ratio. Eur J Clin Nutr 64:2–5

    Article  CAS  PubMed  Google Scholar 

  12. Mancia G, De Backer G, Dominiczak A et al (2007) 2007 guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 28:1462–1536

    PubMed  Google Scholar 

  13. Grundy SM, Cleeman JI, Daniels SR et al (2005) American Heart Association; National Heart, Lung, and Blood Institute Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 25:2735–2752

    Article  Google Scholar 

  14. Shuster A, Patlas M, Pinthus JH et al (2012) The clinical importance of visceral adiposity: a critical review of methods for visceral adipose tissue analysis. Br J Radiol 85:1–10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Fabbrini E, Magkos F, Mohammed BS et al (2009) Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Natl Acad Sci USA 106:15430–15435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Speliotes EK, Massaro JM, Hoffmann U et al (2010) Fatty liver is associated with dyslipidemia and dysglycemia independent of visceral fat: the Framingham Heart Study. Hepatology 51:1979–1987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Therkelsen KE, Pedley A, Speliotes EK et al (2013) Intramuscular fat and associations with metabolic risk factors in the Framingham Heart Study. Arterioscler Thromb Vasc Biol 33:863–870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. O’Rourke RW (2009) Molecular mechanisms of obesity and diabetes: at the intersection of weight regulation, inflammation, and glucose homeostasis. World J Surg 33:2007–2013. doi:10.1007/s00268-009-0067-6

    Article  PubMed  Google Scholar 

  19. Ibrahim MM (2010) Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev 11:11–18

    Article  PubMed  Google Scholar 

  20. Peinado JR, Jimenez-Gomez Y, Pulido MR et al (2010) The stromal-vascular fraction of adipose tissue contributes to major differences between subcutaneous and visceral fat depots. Proteomics 10:3356–3366

    Article  CAS  PubMed  Google Scholar 

  21. Hutley L, Prins JB (2005) Fat as an endocrine organ: relationship to the metabolic syndrome. Am J Med Sci 330:280–289

    Article  PubMed  Google Scholar 

  22. Mauriège P, Marette A, Atgié C et al (1995) Regional variation in adipose tissue metabolism of severely obese premenopausal women. J Lipid Res 36:672–684

    PubMed  Google Scholar 

  23. Mittelman SD, Van Citters GW, Kirkman EL et al (2002) Extreme insulin resistance of the central adipose depot in vivo. Diabetes 51:755–761

    Article  CAS  PubMed  Google Scholar 

  24. Sniderman AD, Bhopal R, Prabhakaran D et al (2007) Why might South Asians be so susceptible to central obesity and its atherogenic consequences? The adipose tissue overflow hypothesis. Int J Epidemiol 36:220–225

    Article  PubMed  Google Scholar 

  25. Hallgreen CE, Hall KD (2008) Allometric relationship between changes of visceral fat and total fat mass. Int J Obes (Lond) 32:845–852

    Article  CAS  Google Scholar 

  26. Ramalho R, Guimarães C, Gil C et al (2009) Morbid obesity and inflammation: a prospective study after adjustable gastric banding surgery. Obes Surg 19:915–920

    Article  PubMed  Google Scholar 

  27. Pardina E, Ferrer R, Baena-Fustegueras JA et al (2012) Only C-reactive protein, but not TNF-α or IL6, reflects the improvement in inflammation after bariatric surgery. Obes Surg 22:131–139

    Article  PubMed  Google Scholar 

  28. Ridker PM, Danielson E, Fonseca FA et al (2008) Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J 20:2195–2207

    Article  Google Scholar 

  29. Tzotzas T, Evangelou P, Kiortsis DN (2011) Obesity, weight loss and conditional cardiovascular risk factors. Obes Rev 12:e282–e289

    Article  CAS  PubMed  Google Scholar 

  30. Ledoux S, Coupaye M, Essig M et al (2010) Traditional anthropometric parameters still predict metabolic disorders in women with severe obesity. Obesity (Silver Spring) 18:1026–1032

    Article  Google Scholar 

  31. Giles JT, Allison M, Blumenthal RS et al (2010) Abdominal adiposity in rheumatoid arthritis: association with cardiometabolic risk factors and disease characteristics. Arthritis Rheum 62:3173–3182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Visser M, Bouter LM, McQuillan GM et al (1999) Elevated C-reactive protein levels in overweight and obese adults. J Am Med Assoc 8:2131–2135

    Article  Google Scholar 

  33. Rao SR (2012) Inflammatory markers and bariatric surgery: a meta-analysis. Inflamm Res 61:789–807

    Article  CAS  PubMed  Google Scholar 

  34. Anty R, Bekri S, Luciani N et al (2006) The inflammatory C-reactive protein is increased in both liver and adipose tissue in severely obese patients independently from metabolic syndrome, type 2 diabetes, and NASH. Am J Gastroenterol 101:1824–1833

    Article  CAS  PubMed  Google Scholar 

  35. Hakeam HA, O’Regan PJ, Salem AM et al (2009) Inhibition of C-reactive protein in morbidly obese patients after laparoscopic sleeve gastrectomy. Obes Surg 19:456–460

    Article  PubMed  Google Scholar 

  36. Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    Article  CAS  PubMed  Google Scholar 

  37. Smith-Bindman R, Lipson J, Marcus R et al (2009) Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med 169:2078–2086

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Papadakis J.A. for his assistance with the statistical analysis and Dr. Papadakis M. for his assistance with the CT images assessment.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markos Daskalakis.

Additional information

C. Galanakis and M. Daskalakis have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galanakis, C.G., Daskalakis, M., Manios, A. et al. Computed Tomography-Based Assessment of Abdominal Adiposity Changes and Their Impact on Metabolic Alterations Following Bariatric Surgery. World J Surg 39, 417–423 (2015). https://doi.org/10.1007/s00268-014-2826-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-014-2826-2

Keywords

Navigation