Skip to main content

Advertisement

Log in

Land Prioritization: An Approach to the Effective Environmental Planning of Hydrographic Basins

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Hydrographic basins are the fundamental unit for the effective territorial planning. However, areas of higher and lesser susceptibility to degrading processes can occur in the same region, where different actions are required to preserve natural resources, as soil and water. In this context, this study aimed to propose a prioritization model to guide the territorial management in hydrographic basins. The study was conducted in the Tarumã River basin, embedded in the southwest region of the São Paulo State, Brazil. First, the basin was compartmentalized into planning units, based on the delimitation and grouping of small watersheds. In each unit, seven morphometric parameters were calculated. The relationships among the parameters were evaluated by principal component analysis, from which the parameters were weighted. It resulted in an index expressing the environmental fragility of the planning units. Among the planning units, 20% present very-high priority, only 5% very-low priority, and 75% low, moderate, and high priority. Units of higher priority are commonly at the basins’ headwaters, where linear channels and steeper slopes are concentrated. Lower priority units present low relief and hydrography conditions that do not favor high-intensity erosive processes. The proposed method is effective in identifying regions of high susceptibility to degradation according to morphometric parameters, which should be prioritized on the basins’ territorial management. Since these parameters can be easily calculated, it can be presumed that the results could assist the environmental planning and the optimization of natural resources management within different hydrographic basins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aher PD, Adinarayana J, Gorantiwar SD (2014) Quantification of morphometric characterization and prioritization for management planning in semi-arid tropics of India: a remote sensing and GIS approach. J Hydrol 511:850–860. https://doi.org/10.1016/j.jhydrol.2014.02.028

    Article  Google Scholar 

  • Alves JM, de P, Castro P, de TA (2003) Influência de feições geológicas na morfologia da bacia do Rio do Tanque (MG) baseada no estudo de parâmetros morfométricos e análise de padrões de lineamentos. Rev Brasileira de Geociências 33:117–124. https://doi.org/10.25249/0375-7536.2003332117124

    Article  Google Scholar 

  • Antoneli V, Thomaz EL (2007) Caracterização do meio físico da bacia do Arroio Boa Vista—Guamiranga-PR. Caminhos da Geografia, Uberlândia 8

  • Bernardi ECS, Panziera AG, Buriol GA, Swarowsky A (2013) Bacia Hidrográfica como Unidade de Gestão Ambiental. Ciência Nat e Tecnológicas 13:159–168

    Google Scholar 

  • Bigarella JJ (2003) Estrutura e origem das paisagens tropicais e subtropicais, 3rd edn. UFSC, Florianópolis, Brasil

  • Box GEP, Cox DR (1964) An ANalysis Of Transformations. J R Stat Soc: Ser B (Methodol) 26:211–243. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x

    Article  Google Scholar 

  • Brasil (2012) Lei de Proteção da Vegetação Nativa (12.651/12). www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12651.htm. Accessed 29 Jul 2020

  • Cardoso CA, Dias HCT, Soares CPB, Martins SV (2006) Caracterização morfométrica da bacia hidrográfica do rio Debossan, Nova Friburgo, RJ. Rev Árvore 30:241–248. https://doi.org/10.1590/s0100-67622006000200011

    Article  Google Scholar 

  • Christofoletti A (1980) Geomorfologia. Blucher, São Paulo

  • Farhan Y, Anbar A, Al-Shaikh N, Mousa R (2017) Prioritization of Semi-Arid Agricultural Watershed Using Morphometric and Principal Component Analysis, Remote Sensing, and GIS Techniques, the Zerqa River Watershed, Northern Jordan. Agric Sci 8:113–148. https://doi.org/10.4236/as.2017.81009

    Article  Google Scholar 

  • Feitosa FAC, Manoel-Filho J (1997) Hidrogeologia: conceitos e aplicações. CPRM, LABHID-UFPE, Fortaleza, Brasil

    Google Scholar 

  • Fetter CW (1994) Applied hydrogeology, 3rd edn. Prentice Hall, New Jersey

    Google Scholar 

  • Gell P, Fluin J, Tibby J et al. (2009) Anthropogenic acceleration of sediment accretion in lowland floodplain wetlands, Murray-Darling Basin, Australia. Geomorphology 108:122–126. https://doi.org/10.1016/j.geomorph.2007.12.020

    Article  Google Scholar 

  • Gotelli NJ, Ellinson AM (2011) Princípios de estatística em ecologia. Artmed, Porto Alegre, Brazil

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis Palaeontologia Electron 4(1):9. https://folk.uio.no/ohammer/past/

  • Horton RE (1945) Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Bull Geol Soc Am 5:275–370. 10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2

    Article  Google Scholar 

  • IBGE—Instituto Brasileiro de Geografia e Estatística (2019) Biomas e sistema costeiro-marinho do Brasil: compatível com a escala 1:250000. Coordenação de Recursos Naturais e Estudos Ambientais. IBGE, Rio de Janeiro, p 168. https://biblioteca.ibge.gov.br/visualizacao/livros/liv101676.pdf. Acessed 17 Aug 2014

  • Lal R (2015) Restoring soil quality to mitigate soil degradation. Sustainability 7:5875–5895. https://doi.org/10.3390/su7055875

    Article  Google Scholar 

  • Meshram SG, Sharma SK (2017) Prioritization of watershed through morphometric parameters: a PCA-based approach. Appl Water Sci 7:1505–1519. https://doi.org/10.1007/s13201-015-0332-9

    Article  Google Scholar 

  • Moreli AP, Pereira DP, da Silva SF (2014) Caracterização morfométrica da sub-bacia hidrográfica do córrego Cancã em Venda Nova do Imigrante-ES, Brasil. Nucleus 11

  • Neto JCAdaS (2013) Avaliação da vulnerabilidade à perda de solos na bacia do rio Salobra, MS, com base nas formas do terreno. Geografia 22:5–25

    Google Scholar 

  • de Oliveira PTS, Alves Sobrinho T, Steffen JL, Rodrigues DBB (2010) Caracterização morfométrica de bacias hidrográficas através de dados SRTM. Rev Brasileira de Engenharia Agrícola e Ambiental 14:819–825. https://doi.org/10.1590/s1415-43662010000800005

    Article  Google Scholar 

  • Porto MFA, Porto RLL (2008) Gestão de bacias hidrográficas. Estudos Avancados 22:44–60. https://doi.org/10.1590/s0103-40142008000200004

    Article  Google Scholar 

  • Prieto-Amparán JA, Pinedo-Alvarez A, Vázquez-Quintero G et al. (2019) A multivariate geomorphometric approach to prioritize erosion-prone watersheds. Sustainability 11:5140. https://doi.org/10.3390/su11185140

    Article  CAS  Google Scholar 

  • QGIS Development Team (2020) Quantum GIS—Geographic Information System. Open Source Geospatial Foundation Project. Version 3.10.5. http://qgis.osgeo.org

  • Rossi M (2017) Mapa pedológico do Estado de São Paulo: revisado e ampliado. Instituto Florestal, São Paulo, p 118. https://www.infraestruturameioambiente.sp.gov.br/. Acessed 17 Aug 2014

  • Schumm SA (1956) Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Bull Geol Soc Am 67:597–646. 10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2

    Article  Google Scholar 

  • Sharma SK, Gajbhiye S, Nema RK, Tignath S (2014) Assessing vulnerability to soil erosion of a watershed of Tons River Basin in Madhya Pradesh using remote sensing and GIS. Int J Environ Res Dev 4:153–164

    Google Scholar 

  • SMA-SP—Secretaria de Meio Ambiente do Estado de São Paulo (2013). Rede de drenagem do estado de são Paulo obtida a partir da base do GISAT (cartas topográficas na escala 1:50.000) por processo automático—Coordenadoria de Planejamento Ambiental, Secretaria do Meio ambiente do Estado de São Paulo

  • Sreedevi PD, Owais S, Khan HH, Ahmed S (2009) Morphometric analysis of a watershed of South India using SRTM data and GIS. J Geol Soc India 73:543–552. https://doi.org/10.1007/s12594-009-0038-4

  • Strahler AN (1957) Quantitative analysis of watershed geomorphology. Trans Am Geophys Union 4–39. https://doi.org/10.1029/TR038i006p00913

  • Strahler A (1964) Quantitative Geomorphology of Drainage Basins and Channel Networks. In: Chow V (ed.) Handbook of Applied Hydrology, McGraw Hill, New York, pp 439–476

  • Teodoro VLI, Teixeira D, Costa DJL, Fuller BB (2007) O Conceito de Bacia Hidrográfica e a Importância da Caracterização Morfométrica para o Entendimento da Dinâmica Ambiental Local. Revista Brasileira Multidisciplinar 11. https://doi.org/10.25061/2527-2675/rebram/2007.v11i1.236

  • Tonello KC, Dias HCT, De Souza AL et al. (2006) Morfometria da bacia hidrográfica da Cachoeira das Pombas, Guanhães—MG. Rev Arvore 30:849–857. https://doi.org/10.1590/S0100-67622006000500019

    Article  Google Scholar 

  • Valeriano MM (2008) Topodata: guia para utilização de dados geomorfológicos locais. INPE, São José dos Campos. http://mtc-m16c.sid.inpe.br/col/sid.inpe.br/mtc-m18@80/2008/07.11.19.24/doc/publicacao.pdf. Acessed 17 Aug 2014

    Google Scholar 

  • Villela SM, Mattos A (1975) Hidrologia aplicada. Mc Graw-Hill do Brasil, São Paulo, Brasil

    Google Scholar 

  • Xiong M, Sun R, Chen L (2018) Effects of soil conservation techniques on water erosion control: a global analysis. Sci Total Environ 645:753–760. https://doi.org/10.1016/j.scitotenv.2018.07.124

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/PROEX) (Grant number: 88882.327891/2019-01) for the fellowship and to Prof. Dr Valdemir Antônio Rodrigues (in memorian) for the exciting discussions on the subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Ravanini Gardon.

Ethics declarations

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gardon, F.R. Land Prioritization: An Approach to the Effective Environmental Planning of Hydrographic Basins. Environmental Management 67, 623–631 (2021). https://doi.org/10.1007/s00267-021-01434-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-021-01434-5

Keywords

Navigation