Skip to main content

Advertisement

Log in

Spermidine Exerts Protective Effects in Random-Pattern Skin Flap Survival in Rats: Possible Involvement of Inflammatory Cytokines, Nitric Oxide, and VEGF

  • Original Articles
  • Basic Science/Experimental
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

Distal necrosis and inflammation are two of the most common health consequences of random-pattern skin flaps survival (SFS). Anti-inflammatory effects of spermidine have been identified in various studies. On the other hand, considering the involvement of the nitric oxide molecule in the spermidine mode of action and also its role in skin tissue function, we analyzed the possible effects of spermidine on the SFS and also, potential involvement of nitrergic pathway and inflammatory cytokine in these phenomena.

Methods

Each rat was pretreated with either a vehicle (control) or various doses of spermidine (0.5, 1, 3, 5, 10 and 30 mg/kg) and then was executed a random-pattern skin flap paradigm. Also, spermidine at the dose of 5 mg/kg was selected and one group rats received spermidine 20 min prior to surgery and one additional dose 1 day after operation. Then, 7 days after operations, interleukin (IL)-6, tumor necrosis factor (TNF)-α, interferon-gamma (IFN-γ), and nitrite levels were inquired in the tissue samples by ELIZA kit. Vascular endothelial growth factor expression was assessed by DAPI staining and fluorescent microscopes. The concentrations of three polyamines, including spermidine, spermine, and cadaverine, were analyzed using HPLC.

Results

Pretreatment with spermidine 5 mg/kg improved SFS considerably in microscopic skin H&E staining analysis and decreased the percentage of necrotic area. Moreover, spermidine exerted promising anti-inflammatory effects via the modulation of nitric oxide and reducing inflammatory cytokines.

Conclusions

Spermidine could improve skin flaps survival, probably through the nitrergic system and inflammation pathways. This preclinical study provides level III evidence for the potential therapeutic effects of spermidine on SFS in rats, based on the analysis of animal models. Further studies are needed to confirm these findings in clinical settings.

Level of Evidence III

This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be shared by request.

References

  1. Gdalevitch P et al (2015) Effects of nitroglycerin ointment on mastectomy flap necrosis in immediate breast reconstruction: a randomized controlled trial. Plast Reconstr Surg 135(6):1530–1539

    Article  CAS  PubMed  Google Scholar 

  2. Wang X et al (2022) Dynamically responsive scaffolds from microfluidic 3D printing for skin flap regeneration. Adv Sci 9(22):e2201155

    Article  Google Scholar 

  3. Lee JH et al (2022) Current status of experimental animal skin flap models: ischemic preconditioning and molecular factors. Int J Mol Sci 23(9):5234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ellabban MA et al (2022) Experimental study of the effects of nitroglycerin, botulinum toxin A, and clopidogrel on bipedicled superficial inferior epigastric artery flap survival. Sci Rep 12(1):20891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li J et al (2019) Betulinic acid enhances the viability of random-pattern skin flaps by activating autophagy. Front Pharmacol 10:1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen J et al (2023) Protein kinase D1 promotes the survival of random-pattern skin flaps in rats. Biochem Biophys Res Commun 641:67–76

    Article  CAS  PubMed  Google Scholar 

  7. Lou J et al (2022) Cyclic helix B peptide promotes random-pattern skin flap survival via TFE3-mediated enhancement of autophagy and reduction of ROS levels. Br J Pharmacol 179(2):301–321

    Article  CAS  PubMed  Google Scholar 

  8. Aryannejad A et al (2021) Protective effect of modafinil on skin flap survival in the experimental random-pattern skin flap model in rats: the role of ATP-sensitive potassium channels and nitric oxide pathway. J Plast Reconstr Aesthet Surg 74(6):1346–1354

    Article  PubMed  Google Scholar 

  9. Roh TS et al (2017) Effect of botulinum toxin A on vasoconstriction and sympathetic neurotransmitters in a murine random pattern skin flap model. Wound Repair Regen 25(1):75–85

    Article  PubMed  Google Scholar 

  10. Han W, Li H, Chen B (2022) Research progress and potential applications of spermidine in ocular diseases. Pharmaceutics 14(7):1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zou D et al (2022) A comprehensive review of spermidine: safety, health effects, absorption and metabolism, food materials evaluation, physical and chemical processing, and bioprocessing. Compr Rev Food Sci Food Saf 21(3):2820–2842

    Article  CAS  PubMed  Google Scholar 

  12. Shi YJ et al (2022) The untapped potential of spermidine alkaloids: sources, structures, bioactivities and syntheses. Eur J Med Chem 240:114600

    Article  CAS  PubMed  Google Scholar 

  13. Zhang R et al (2022) Association between serum spermidine and TyG index: results from a cross-sectional study. Nutrients 14(18):3847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tse RT et al (2022) The association between spermidine/spermine N(1)-acetyltransferase (SSAT) and human malignancies. Int J Mol Sci 23(11):5926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Freitag K et al (2022) Spermidine reduces neuroinflammation and soluble amyloid beta in an Alzheimer’s disease mouse model. J Neuroinflammation 19(1):172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ni Y et al (2022) Spermidine ameliorates nonalcoholic steatohepatitis through thyroid hormone-responsive protein signaling and the gut microbiota-mediated metabolism of bile acids. J Agric Food Chem 70(21):6478–6492

    Article  CAS  PubMed  Google Scholar 

  17. Yuan H et al (2021) Spermidine inhibits joints inflammation and macrophage activation in mice with collagen-induced arthritis. J Inflamm Res 14:2713–2721

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ma L et al (2021) Preventive and therapeutic spermidine treatment attenuates acute colitis in mice. J Agric Food Chem 69(6):1864–1876

    Article  CAS  PubMed  Google Scholar 

  19. Baek AR et al (2020) Spermidine attenuates bleomycin-induced lung fibrosis by inducing autophagy and inhibiting endoplasmic reticulum stress (ERS)-induced cell death in mice. Exp Mol Med 52(12):2034–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Szeliga M, Albrecht J (2021) Roles of nitric oxide and polyamines in brain tumor growth. Adv Med Sci 66(1):199–205

    Article  CAS  PubMed  Google Scholar 

  21. Kapoor RT, Hefft DI, Ahmad A, Allakhverdiev S (2021) Nitric oxide and spermidine alleviate arsenic-incited oxidative damage in Cicer arietinum by modulating glyoxalase and antioxidant defense system. Funct Plant Biol 50:108–120

    Article  Google Scholar 

  22. Jiang MZ et al (2004) Effects of antioxidants and nitric oxide on TNF-alpha-induced adhesion molecule expression and NF-kappaB activation in human dermal microvascular endothelial cells. Life Sci 75(10):1159–1170

    Article  CAS  PubMed  Google Scholar 

  23. Ramot Y et al (2015) N(1)-methylspermidine, a stable spermidine analog, prolongs anagen and regulates epithelial stem cell functions in human hair follicles. Arch Dermatol Res 307(9):841–847

    Article  CAS  PubMed  Google Scholar 

  24. Takuathung MN et al (2021) Anti-psoriatic and anti-inflammatory effects of Kaempferia parviflora in keratinocytes and macrophage cells. Biomed Pharmacother 143:112229

    Article  CAS  PubMed  Google Scholar 

  25. McFarlane RM, Deyoung G, Henry RA (1965) The design of a pedicle flap in the rat to study necrosis and its prevention. Plast Reconstr Surg 35:177–182

    Article  CAS  PubMed  Google Scholar 

  26. Seyfinejad B et al (2022) Ion-pair hollow fiber liquid-phase microextraction combined with capillary electrophoresis for the determination of biogenic amines in rat tissues. J Pharm Biomed Anal 219:114909

    Article  CAS  PubMed  Google Scholar 

  27. Abbaszadeh-Kasbi A et al (2019) Acute activation of α7-nicotinic receptors by nicotine improves rodent skin flap survival through nitrergic system. Ann Plast Surg 83(2):211–216

    Article  CAS  PubMed  Google Scholar 

  28. Taleb S et al (2014) Metformin improves skin flap survival through nitric oxide system. J Surg Res 192(2):686–691

    Article  CAS  PubMed  Google Scholar 

  29. Ala M et al (2020) Sodium valproate improves skin flap survival via gamma-aminobutyric acid and histone deacetylase inhibitory system. J Surg Res 246:519–526

    Article  CAS  PubMed  Google Scholar 

  30. Dehdashtian A et al (2019) Sumatriptan increases skin flap survival through activation of 5-hydroxytryptamine 1b/1d receptors in rats: the mediating role of the nitric oxide pathway. Plast Reconstr Surg 144(1):70e–77e

    Article  CAS  PubMed  Google Scholar 

  31. Kumar V et al (2022) Free spermidine evokes superoxide radicals that manifest toxicity. Elife. https://doi.org/10.7554/eLife.77704

    Article  PubMed  PubMed Central  Google Scholar 

  32. Masoumi M et al (2023) Cannabidiol anticonvulsant effects against lithium-pilocarpine-induced status epilepticus in male rats are mediated by neuroinflammation Modulation and cannabinoids 1 (CB1), but not CB2 and GABA(A) receptors. Cannabis Cannabinoid Res. https://doi.org/10.1089/can.2023.0067

    Article  PubMed  Google Scholar 

  33. Manavi MA et al (2024) Mechanisms underlying dose-limiting toxicities of conventional chemotherapeutic agents. J Chemother. https://doi.org/10.1080/1120009X.2023.2300217

    Article  PubMed  Google Scholar 

  34. Kyriazis M, Swas L, Orlova T (2023) The impact of hormesis, neuronal stress response, and reproduction, upon clinical aging: a narrative review. J Clin Med 12(16):5433

    Article  PubMed  PubMed Central  Google Scholar 

  35. Calabrese E et al (2023) Polyamines and hormesis: making sense of a dose response dichotomy. Chem Biol Interact 386:110748

    Article  CAS  PubMed  Google Scholar 

  36. Sigrist SJ et al (2014) Spermidine-triggered autophagy ameliorates memory during aging. Autophagy 10(1):178–179

    Article  CAS  PubMed  Google Scholar 

  37. Yang Y et al (2017) Induction of autophagy by spermidine is neuroprotective via inhibition of caspase 3-mediated Beclin 1 cleavage. Cell Death Dis 8(4):e2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Handa AK, Fatima T, Mattoo AK (2018) Polyamines: bio-molecules with diverse functions in plant and human health and disease. Front Chem 6:10

    Article  PubMed  PubMed Central  Google Scholar 

  39. Spiljar M, Kuchroo VK (2022) Metabolic regulation and function of T helper cells in neuroinflammation. Semin Immunopathol 44(5):581–598

    Article  CAS  PubMed  Google Scholar 

  40. Lu B et al (2022) Recent advances in fluorescent methods for polyamine detection and the polyamine suppressing strategy in tumor treatment. Biosensors 12(8):633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yamamoto Y et al (2018) Expression and distribution patterns of spermine, spermidine, and putrescine in rat hair follicle. Histochem Cell Biol 149(2):161–167

    Article  CAS  PubMed  Google Scholar 

  42. Ito D et al (2021) Systemic and topical administration of spermidine accelerates skin wound healing. Cell Commun Signal 19(1):36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gelman J et al (1987) Reduced cell death in skin flaps in rats treated with difluoromethylornithine. Faseb j 1(6):474–477

    Article  CAS  PubMed  Google Scholar 

  44. Petereit DG et al (1994) Combining polyamine depletion with radiation therapy for rapidly dividing head and neck tumors: strategies for improved locoregional control. Int J Radiat Oncol Biol Phys 28(4):891–898

    Article  CAS  PubMed  Google Scholar 

  45. Kim G et al (2021) Spermidine-induced recovery of human dermal structure and barrier function by skin microbiome. Commun Biol 4(1):231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fan W et al (2021) Effect of memantine on the survival of an ischemic random skin flap and the underlying mechanism. Biomed Pharmacother 143:112163

    Article  CAS  PubMed  Google Scholar 

  47. Paul S, Kang SC (2013) Natural polyamine inhibits mouse skin inflammation and macrophage activation. Inflamm Res 62(7):681–688

    Article  CAS  PubMed  Google Scholar 

  48. Manavi MA et al (2024) Ivermectin exerts anticonvulsant effects against status epilepticus induced by lithium-pilocarpine in rats via GABA(A) receptor and neuroinflammation modulation: possible interaction of opioidergic pathways and K(ATP) channel with nitrergic system. Mol Neurobiol. https://doi.org/10.1007/s12035-024-04061-3

    Article  PubMed  Google Scholar 

  49. Chin LC et al (2011) The influence of nitric oxide synthase 2 on cutaneous wound angiogenesis. Br J Dermatol 165(6):1223–1235

    Article  CAS  PubMed  Google Scholar 

  50. Ju J, Hou R, Zhang P (2020) D-allose alleviates ischemia/reperfusion (I/R) injury in skin flap via MKP-1. Mol Med 26(1):21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Khiabani KT, Kerrigan CL (2002) The effects of the nitric oxide donor SIN-1 on ischemia-reperfused cutaneous and myocutaneous flaps. Plast Reconstr Surg 110(1):169–176

    Article  PubMed  Google Scholar 

  52. Gazyakan E et al (2021) Modulation of nitric oxide bioavailability attenuates ischemia-reperfusion injury in type II diabetes. J Plast Reconstr Aesthet Surg 74(1):183–191

    Article  PubMed  Google Scholar 

  53. Soufli I et al (2016) Overview of cytokines and nitric oxide involvement in immuno-pathogenesis of inflammatory bowel diseases. World J Gastrointest Pharmacol Ther 7(3):353–360

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zamora R, Vodovotz Y, Billiar TR (2000) Inducible nitric oxide synthase and inflammatory diseases. Mol Med 6(5):347–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sheng W et al (2011) Pro-inflammatory cytokines and lipopolysaccharide induce changes in cell morphology, and upregulation of ERK1/2, iNOS and sPLA2-IIA expression in astrocytes and microglia. J Neuroinflammation 8(1):121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hegdekar N et al (2023) Inhibition of autophagy in microglia and macrophages exacerbates innate immune responses and worsens brain injury outcomes. Autophagy. https://doi.org/10.1080/15548627.2023.2167689

    Article  PubMed  PubMed Central  Google Scholar 

  57. Murphy MP (1999) Nitric oxide and cell death. Biochim Biophys Acta BBA Bioenerg 1411(2):401–414

    Article  CAS  Google Scholar 

  58. Li Y et al (2023) Shengji solution accelerates the wound angiogenesis of full-thickness skin defect in rats via activation of TGF-β1/Smad3-VEGF signaling pathway. Biotechnol Genet Eng Rev. https://doi.org/10.1080/02648725.2023.2196901

    Article  PubMed  Google Scholar 

  59. Hwang J, Kiick KL, Sullivan MO (2023) VEGF-encoding, gene-activated collagen-based matrices promote blood vessel formation and improved wound repair. ACS Appl Mater Interfaces 15(13):16434–16447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Johnson KE, Wilgus TA (2014) Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv Wound Care (New Rochelle) 3(10):647–661

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from Experimental Medicine Research Center, Tehran University of Medical Sciences (Grant No. 1400-2-209-54847) and Iran National Science Foundation. Special thanks to Iran National Science Foundation (INSF) for their support.

Author information

Authors and Affiliations

Authors

Contributions

AD and RMJ contributed to study conception and design. KJ, RMJ, BS, MC, ST, and HR contributed to acquisition of data. KJ, HR, MM, ST, and RMJ contributed to analysis and interpretation of data. KJ, MM, RMJ, MC, MB, and HR contributed to drafting of manuscript. RMJ, MM, MC, BS, AD, and ST contributed to critical revision, and RMJ obtained funding.

Corresponding authors

Correspondence to Razieh Mohammad Jafari or Ahmad Reza Dehpour.

Ethics declarations

Conflict of interest

None to declare.

Ethical approval

This study was approved by the Ethics in Medical Research Committee of Tehran University of Medical Sciences (IR.TUMS.VCR.REC.1400-821).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jouyban, K., Mohammad Jafari, R., Charkhpour, M. et al. Spermidine Exerts Protective Effects in Random-Pattern Skin Flap Survival in Rats: Possible Involvement of Inflammatory Cytokines, Nitric Oxide, and VEGF. Aesth Plast Surg (2024). https://doi.org/10.1007/s00266-024-04119-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00266-024-04119-6

Keywords

Navigation