Skip to main content

Advertisement

Log in

Histomorphometric Changes of the Masseter Muscle of Rats After a Single Injection of Botulinum Toxin Type A

  • Original Articles
  • Basic Science/Experimental
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

It has been reported that botulinum toxin type A (BoNT-A) produces structural changes in masticatory muscles. However, not all histomorphometric parameters affected by BoNT-A parameters have been assessed. This study investigated the histomorphometric changes in the masseter muscle of rats after a single injection of BoNT-A.

Methods

Forty-four adult animals were randomly divided into control group (n = 22) and BoNT-A group (n = 22). Controls received a single dose of 0.14 mL/kg of saline in masseter muscles, and the BoNT-A group received a 7 U/Kg of BoNT-A. The groups received the same volume of injected substances. Animals were sacrificed on 7th (n = 5), 14th (n = 5), 21st (n = 5), 28th (n = 4) and 90th (n = 3) days post-treatment. Histological masseter tissue slides were obtained from hematoxylin–eosin treatment and analyzed in optical microscopy regarding muscle cross-sectional area, amount of connective tissue and quantity and diameter of myocytes. For statistical analysis, generalized linear models were used to compare the data (ANOVA). In all test, the significance level of 5% was set.

Results

BoNT-A values of cross-sectional area of the masseter muscle were significantly lower than controls (p < 0.01) throughout the study. Regarding myocytes quantity, BoNT-A subgroups presented higher values than controls (p < 0.0001) since the 14th day until the end of the study; however, the diameter of myocytes was smaller in all BoNT-A subgroups (p < 0.0001) in all assessment points. The amount of connective tissue was higher in BoNT-A subgroups (p < 0.0001) throughout the study.

Conclusion

A single injection of BoNT-A altered the structure of masseter muscle of rats, regarding its histomorphometric parameters.

No Level Assigned

This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Datasets related to this article will be available upon request to the corresponding author.

References

  1. Matak I, Lacković Z (2014) Botulinum toxin A, brain and pain. Prog Neurobiol 119–120:39–59

    Article  PubMed  Google Scholar 

  2. Muñoz Lora VRM, Del Bel Cury AA, Jabbari B et al (2019) Botulinum toxin type A in dental medicine. J Dent Res 98(13):1450–1457

    Article  PubMed  Google Scholar 

  3. Matak I, Bölcskei K, Bach-Rojecky L et al (2019) Mechanisms of botulinum toxin type A action on pain. Toxins (Basel) 11(8):459

    Article  CAS  PubMed  Google Scholar 

  4. Coté TR, Mohan AK, Polder JA et al (2005) Botulinum toxin type A injections: adverse events reported to the US food and drug administration in therapeutic and cosmetic cases. J Am Acad Dermatol 53(3):407–415

    Article  PubMed  Google Scholar 

  5. De la Torre CG, Poluha RL, Lora VM et al (2019) Botulinum toxin type A applications for masticatory myofascial pain and trigeminal neuralgia: what is the evidence regarding adverse effects? Clin Oral Investig 23(9):3411–3421

    Article  Google Scholar 

  6. Dressler D, Saberi FA, Barbosa ER (2005) Botulinum toxin: mechanisms of action. Arq Neuropsiquiatr 63(1):180–185

    Article  PubMed  Google Scholar 

  7. Dutton JJ (1996) Botulinum-A toxin in the treatment of craniocervical muscle spasms: short- and long-term, local and systemic effects. Surv Ophthalmol 41(1):51–65

    Article  CAS  PubMed  Google Scholar 

  8. Brin MF (1997) Botulinum toxin: chemistry, pharmacology, toxicity, and immunology. Muscle Nerve Suppl 6:S146–S168

    Article  CAS  PubMed  Google Scholar 

  9. Moon YM, Kim MK, Kim SG et al (2016) Apoptotic action of botulinum toxin on masseter muscle in rats: early and late changes in the expression of molecular markers. Springerplus 5(1):991

    Article  PubMed  PubMed Central  Google Scholar 

  10. Balanta-Melo J, Toro-Ibacache V, Torres-Quintana MA et al (2018) Early molecular response and microanatomical changes in the masseter muscle and mandibular head after botulinum toxin intervention in adult mice. Ann Anat 216:112–119

    Article  PubMed  Google Scholar 

  11. Tsai CY, Lin YC, Su B et al (2012) Masseter muscle fibre changes following reduction of masticatory function. Int J Oral Maxillofac Surg 41(3):394–399

    Article  CAS  PubMed  Google Scholar 

  12. Fortuna R, Vaz MA, Youssef AR et al (2011) Changes in contractile properties of muscles receiving repeat injections of botulinum toxin (Botox). J Biomech 44(1):39–44

    Article  PubMed  Google Scholar 

  13. De la Torre CG, Alvarez-Pinzon N, Muñoz-Lora VRM et al (2020) Efficacy and safety of botulinum toxin type A on persistent myofascial pain: a randomized clinical trial. Toxins (Basel) 12(6):395

    Article  Google Scholar 

  14. Shome D, Khare S, Kapoor R (2019) Efficacy of botulinum toxin in treating Asian Indian patients with masseter hypertrophy: a 4-year follow-up study. Plast Reconstr Surg 144(3):390e-e396

    Article  CAS  PubMed  Google Scholar 

  15. Park HU, Kim BI, Kang SM et al (2013) Changes in masticatory function after injection of botulinum toxin type A to masticatory muscles. J Oral Rehabil 40(12):916–922

    Article  CAS  PubMed  Google Scholar 

  16. Kün-Darbois JD, Libouban H, Chappard D (2015) Botulinum toxin in masticatory muscles of the adult rat induces bone loss at the condyle and alveolar regions of the mandible associated with a bone proliferation at a muscle enthesis. Bone 77:75–82

    Article  PubMed  Google Scholar 

  17. Moon YM, Kim YJ, Kim MK et al (2015) Early effect of Botox-A injection into the masseter muscle of rats: functional and histological evaluation. Maxillofac Plast Reconstr Surg. 37(1):46

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16(2):109–110

    Article  PubMed  Google Scholar 

  19. Lora VR, Clemente-Napimoga JT, Abdalla HB et al (2017) Botulinum toxin type A reduces inflammatory hypernociception induced by arthritis in the temporomadibular joint of rats. Toxicon 129:52–57

    Article  CAS  PubMed  Google Scholar 

  20. Turner NJ, Badylak SF (2012) Regeneration of skeletal muscle. Cell Tissue Res 347(3):759–774

    Article  PubMed  Google Scholar 

  21. Cao RY, Li J, Dai Q et al (2018) Muscle atrophy: present and future. Adv Exp Med Biol 1088:605–624

    Article  CAS  PubMed  Google Scholar 

  22. Kim HJ, Jeon BS, Lee KW (2000) Hemimasticatory spasm associated with localized scleroderma and facial hemiatrophy. Arch Neurol 57(4):576–580

    Article  CAS  PubMed  Google Scholar 

  23. Shenkman BS, Turtikova OV, Nemirovskaya TL et al (2010) Skeletal muscle activity and the fate of myonuclei. Acta Naturae. 2(2):59–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dumont NA, Bentzinger CF, Sincennes MC et al (2015) Satellite cells and skeletal muscle regeneration. Compr Physiol 5(3):1027–1059

    Article  PubMed  Google Scholar 

  25. Ito R, Higa M, Goto A et al (2018) Activation of adiponectin receptors has negative impact on muscle mass in C2C12 myotubes and fast-type mouse skeletal muscle. PLoS ONE 13(10):e0205645

    Article  PubMed  PubMed Central  Google Scholar 

  26. Addison WN, Hall KC, Kokabu S et al (2019) Zfp423 regulates skeletal muscle regeneration and proliferation. Mol Cell Biol. https://doi.org/10.1128/MCB.00447-18

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zammit PS, Golding JP, Nagata Y et al (2004) Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 166(3):347–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rantanen J, Hurme T, Lukka R et al (1995) Satellite cell proliferation and the expression of myogenin and desmin in regenerating skeletal muscle: evidence for two different populations of satellite cells. Lab Invest 72(3):341–347

    CAS  PubMed  Google Scholar 

  29. Ten Broek RW, Grefte S, Von den Hoff JW (2010) Regulatory factors and cell populations involved in skeletal muscle regeneration. J Cell Physiol 224(1):7–16

    Article  PubMed  Google Scholar 

  30. Morgan JE, Partridge TA (2003) Muscle satellite cells. Int J Biochem Cell Biol 35(8):1151–1156

    Article  CAS  PubMed  Google Scholar 

  31. Hwang JH, Ra YJ, Lee KM et al (2006) Therapeutic effect of passive mobilization exercise on improvement of muscle regeneration and prevention of fibrosis after laceration injury of rat. Arch Phys Med Rehabil 87(1):20–26

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES) for the PhD scholarship of D.M.R.—grant code 001 and the Sao Paulo Research Foundation—FAPESP for the post-doctoral scholarship of G. D. T. C. (grant 2017/21674-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo De la Torre Canales.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to disclose.

Informed Consent

For this type of study, informed consent is not required.

Institutional Review Board Statement

The present study was approved by the Ethics Committee in Animals Research of the State University of Campinas (CEUA/UNICAMP), Sao Paulo, Brazil under protocol no. 4554-1/2017 and followed the National Council for Control of Animal Experimentation (CONCEA). All applicable institutional and/or national guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, D.M., de Brito Silva, R., De la Torre Canales, G. et al. Histomorphometric Changes of the Masseter Muscle of Rats After a Single Injection of Botulinum Toxin Type A. Aesth Plast Surg 48, 1037–1044 (2024). https://doi.org/10.1007/s00266-023-03572-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-023-03572-z

Keywords

Navigation