Skip to main content

Advertisement

Log in

Biologic Behavior of Hydroxyapatite Used in Facial Augmentation

  • Original Article
  • Non-Surgical Aesthetic
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Introduction

The recent finding that shrinkage of key areas of the facial skeleton contributes to the aging appearance of the face has prompted a search for the most appropriate bone-like implant material. Evidence that hydroxyapatite, in granular form, maintains volume in the long term supports its use in the correction of aging, in addition to its use in the correction of inherently deficient areas of the facial skeleton. The biologic response of hydroxyapatite needs to be fully understood for its use to be confidently recommended.

Materials and Methods

Samples of ‘living’ hydroxyapatite from the anterior maxilla, zygoma, and mandible of 17 patients were analyzed. These were obtained during revision procedures performed between 6 months and 15 years following original placement on the facial skeleton.

Results

Histology showed that in every case, the individual granules were embedded within a mass of collagen that made up about half of the total implant volume. The collagen mass also contained fine elastin, fibroblasts, lymphocytes, occasional granulomas, and vessels. By 2 years, a new compact bone containing osteoblasts and osteocytes was present in all specimens in the deep (osseous) aspect. Bone progressively replaced the original collagen between the granules with a sharply defined transition at the interface.

Conclusions

This study confirmed a two-stage biologic change following onlay placement of hydroxyapatite granules on the facial skeleton, i.e., initial collagen formation with subsequent conversion to bone. This integrates the implant with the host bone which stabilizes the implant position and shape initially and in long term.

No Level Assigned

This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors.www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Figs. 4–5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baines FW, Elia FP (1996) Facial skeletal augmentation with hydroxyapatite granules. Churchill Livingstone, New York

    Google Scholar 

  2. Bonucci E, Marini E et al (1997) Osteogenic response to hydroxyapatite-fibrin implants in maxillofacial defects. Eur J Oral Sci 105:557–561

    Article  CAS  PubMed  Google Scholar 

  3. Byrd HS, Hobar PC, Shewmake K (1993) Augmentation of the craniofacial skeleton with porous hydroxyapatite granules. Plast Reconstr Surg 91:15–22 (Discussion 23–16)

    Article  CAS  PubMed  Google Scholar 

  4. el Deeb M, Roszkowski M (1988) Hydroxylapatite granules and blocks as an extracranial augmenting material in rhesus monkeys. J Oral Maxillofac Surg 46:33–40

    Article  PubMed  Google Scholar 

  5. Drobeck HP, Rothstein SS, Gumaer KI, Sherer AD, Slighter RG (1984) Histologic observation of soft-tissue responses to implanted, multifaceted particles and discs of hydroxylapatite. J Oral Maxillofac Surg 42:143

    Article  CAS  PubMed  Google Scholar 

  6. Farrior RT (1966) Implant materials in restoration of facial contour. Laryngoscope 76:934–954

    CAS  PubMed  Google Scholar 

  7. Fortunato G, Marini E (1997) Long-term results of hydroxyapatite-fibrin glue implantation in plastic and reconstructive craniofacial surgery. J Cranio Maxfac Surg 35:124–135

    Article  Google Scholar 

  8. Frame JW, Brady CL (1987) The versatility of hydroxyapatite blocks in maxillofacial surgery. Br J Oral Maxillofac Surg 25:452–464

    Article  CAS  PubMed  Google Scholar 

  9. Harvey WK, Pincock JL, Matukas VJ, Lemons JE (1985) Evaluation of subcutaneously implanted hydroxyapatite-avitene mixture in rabbits. J Oral Maxillofac Surg 43:277

    Article  CAS  PubMed  Google Scholar 

  10. Hinderer UT (1971) Profileplasty. Int Microbiol J Aesthet Plast Surg. doi:10.1007/BF01570230

    Google Scholar 

  11. Hobar PC, Pantaloni M, Byrd HS (2000) Porous hydroxyapatite granules for alloplastic enhancement of the facial region. Clin Plast Surg 27:557–569

    CAS  PubMed  Google Scholar 

  12. Holmes RE (1979) Bone regeneration within a coralline hydroxyapatite implant. Plast Reconstr Surg 63:626

    Article  CAS  PubMed  Google Scholar 

  13. Holmes RE, Mooney V, Bucholz R, Tencer AA (1984) Coralline hydroxyapatite bone graft substitute. Clin Orthop 188:252

    CAS  Google Scholar 

  14. Hulbert SF, Young FA, Mathews RS et al (1970) Potential of ceramic materials as permanently implantable skeletal prosthesis. J Biomed Mater Res 4:433–456

    Article  CAS  PubMed  Google Scholar 

  15. Ingram AE Jr, Robinson J, Rohrich RJ (1996) The antibacterial effect of porous hydroxyapatite granules. Plast Reconstr Surg 98:1119

    Article  PubMed  Google Scholar 

  16. Junqueira LC, Carneiro J, Kelley RO (eds) (1992) Basic histology. Appleton & Lange, London, pp 141–162

    Google Scholar 

  17. Kent JN, Quinn JH, Zide MF, Finger IM, Jarcho M, Rothstein SS (1992) Correction of alveolar ridge deficiencies with nonresorbable hydroxylapatite. J Am Dent Assoc 105:993–1001

    Article  Google Scholar 

  18. Lineham R (1974) Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 247:220–222

    Article  Google Scholar 

  19. Meijer HJ, Steen WH, Bosman F, Wittkampf AR (1997) Radiographic evaluation of mandibular augmentation with prefabricated hydroxylapatite/fibrin glue implants. J Oral Maxillofac Surg 55:138–144

    Article  CAS  PubMed  Google Scholar 

  20. Mendelson BC, Jacobson SR, Laviopierre AM, Huggins RJ (2010) The fate of hydroxyapatite granules used in facial skeletal augmentation. Aesthet Plast Surg 34:455–461

    Article  Google Scholar 

  21. Mendelson BC, Wong CH (2012) Changes in the facial skeleton with ageing: implications and applications in facial rejuvenation. Aesth Plast Surg 36:753–760

    Article  Google Scholar 

  22. Misiek DJ, Kent JN, Carr RF (1984) Soft-tissue responses to hydroxylapatite particles of different shapes. J Oral Maxillofac Surg 42:150

    Article  CAS  PubMed  Google Scholar 

  23. Moreira-Gonzalez A, Jackson IT, Miyawaki T, Dinick V, Yavuzer R (2003) Augmentation of the craniomaxillofacial region using porous hydroxyapatite granules. Plast Reconstr Surg 111:1808–1817

    Article  PubMed  Google Scholar 

  24. Pettis GY, Kaban LB, Glowacki J (1990) Tissue response to composite ceramic hydroxyapatite/demineralized bone implants. J Oral Maxillofac Surg 48:1068–1074

    Article  CAS  PubMed  Google Scholar 

  25. Piecuch JF, Fedorka NJ (1983) Results of soft-tissue surgery over implanted replamine from hydroxyapatite. J Oral Maxillofac Surg 41:80

    Article  Google Scholar 

  26. Piecuch JF, Goldberg AJ, Shastry CV, Canowski RB (1984) Compressive strength of implanted porous replamine from hydroxyapatite. J Biomed Mater Res 18:39

    Article  CAS  PubMed  Google Scholar 

  27. Pollick S, Shors EC, Holmes RE, Kraut RA (1995) Bone formation and implant degradation of coralline porous ceramics placed in bone and ectopic sites. J Oral Maxillofac Surg 53:915–922 (Discussion 922–913)

    Article  CAS  PubMed  Google Scholar 

  28. Rees TD, Wood Smith D (1973) Cosmetic facial surgery, 1st edn. Saunders, Philadelphia

    Google Scholar 

  29. Rubin JP, Yaremchuk MJ (1997) Complications and toxicities of implantable biomaterials used in facial reconstructive and aesthetic surgery. Plast Reconstr Surg 100:1336–1353

    Article  CAS  PubMed  Google Scholar 

  30. Salyer KE, Hall CD (1989) Porous hydroxyapatite as an onlay bone graft substitute for maxillofacial surgery. Plast Reconstr Surg 84:236–244

    Article  CAS  PubMed  Google Scholar 

  31. Sari A, Yavuzer R, Ayhan S, Tuncer S, Latifoglu O, Atabay K, Celebi MC (2003) Hard tissue augmentation of the mandibular region with hydroxyapatite granules. J Craniofac Surg 14:919–923

    Article  PubMed  Google Scholar 

  32. Scales JT, Winter GD (1975) Clinical considerations in the choice of materials for orthopedic internal prostheses. J Biomed Mater Res 9:167–176

    Article  CAS  PubMed  Google Scholar 

  33. Terino EO, Flowers RS (2000) The art of alloplastic facial contouring. Mosby, St. Louis

    Google Scholar 

  34. Wolfe SA (1982) Autogenous bone grafts versus alloplastic material in maxillofacial surgery. Clin Plast Surg 9:539–540

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Professor Jeffrey Kerr of Monash University, Department of Anatomy, Australia for his expertise and assistance in the interpretation of the histology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Huggins.

Ethics declarations

Conflict of Interest

The authors declare no commercial or financial interest in any of the materials or apparatus detailed in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huggins, R.J., Mendelson, B.C. Biologic Behavior of Hydroxyapatite Used in Facial Augmentation. Aesth Plast Surg 41, 179–184 (2017). https://doi.org/10.1007/s00266-016-0707-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-016-0707-9

Keywords

Navigation