Skip to main content

Advertisement

Log in

Behavioral responses of wild animals to anthropogenic change: insights from domestication

  • Invited Review
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

With nearly all life on earth experiencing direct or indirect effects of human activity, there is an urgent need to understand how organisms do or do not adapt to human-induced environmental change. Domestication was an early crash into the Anthropocene for some species, and the response of animal populations to domestication selection gives us insights on how plastic responses and evolutionary changes interact to determine the fate of wild vertebrates responding to a human-altered world. We consider intentional breeding, managed hunting, and extermination as part of a continuum of anthropogenic agents of ecological selection and highlight shared targets of selection between domestication and human-induced selection pressures more broadly. Many of the traits that predict successful domestication also predict adaptation of wild animals to human-dominated environments. Domestic animals are also a source for feral lineages and for genetic exchange with wild populations. Shared ecological constraints and gene flow thus contribute to convergent or congruent changes across a spectrum of responses to human influence. Evaluating domestication as another source of anthropogenic selection yields insights for conservation and a promising way to understand mechanisms of behavioral adaptation.

Significance statement

In this review, we draw insights for conservation from domestication—the oldest and most intense evolutionary interaction between animals and humans. Domestication is a special case of organisms successfully responding to an abrupt shift towards human-altered environments, and success in those environments depends on the same factors that make some animals easier to domesticate than others. Domestication has the potential to simultaneously inform us how behavior and genetics contribute to the process of human adaptation in animals and provide a window into the processes required for animals to become human-adjacent. Understanding how animals adapt in our presence yields clues as to how contemporary species react to decreasing habitat and increasing contact with humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Code availability

Code sharing is not applicable to this article as no code was generated during the current study.

References

  • Agnvall B, Ali A, Olby S, Jensen P (2014) Red Junglefowl (Gallus gallus) selected for low fear of humans are larger, more dominant and produce larger offspring. Animal 8:1498–1505

    Article  CAS  PubMed  Google Scholar 

  • Agnvall B, Katajamaa R, Altimiras J, Jensen P (2015) Is domestication driven by reduced fear of humans? Boldness, metabolism and serotonin levels in divergently selected red junglefowl (Gallus gallus). Biol Lett 11:20150509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Agnvall B, Bélteky J, Katajamaa R, Jensen P (2018) Is evolution of domestication driven by tameness? A selective review with focus on chickens. Appl Anim Behav Sci 205:227–233

    Article  Google Scholar 

  • Aipanjiguly S, Jacobson SK, Flamm R (2003) Conserving manatees: knowledge, attitudes, and intentions of boaters in Tampa Bay, Florida. Conserv Biol 17:1098–1105

    Article  Google Scholar 

  • Alberti M, Marzluff J, Hunt VM (2017) Urban driven phenotypic changes: empirical observations and theoretical implications for eco-evolutionary feedback. Phil Trans R Soc B 372:20160029

    Article  PubMed  PubMed Central  Google Scholar 

  • Allendorf FW, Hard JJ (2009) Human-induced evolution caused by unnatural selection through harvest of wild animals. P Natl Acad Sci USA 106(Suppl 1):9987–9994

    Article  CAS  Google Scholar 

  • Almathen F, Charruau P, Mohandesan E et al (2016) Ancient and modern DNA reveal dynamics of domestication and cross-continental dispersal of the dromedary. P Natl Acad Sci USA 113:6707–6712

    Article  CAS  Google Scholar 

  • Araki H, Cooper B, Blouin MS (2007) Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318:100–103

    Article  CAS  PubMed  Google Scholar 

  • Argüeso D, Evans JP, Fita L, Bormann KJ (2014) Temperature response to future urbanization and climate change. Clim Dynam 42:2183–2199

    Article  Google Scholar 

  • Armstrong DP, Seddon PJ (2008) Directions in reintroduction biology. Trends Ecol Evol 23:20–25

    Article  PubMed  Google Scholar 

  • Axelsson E, Ratnakumar A, Arendt M, Maqbool K, Webster MT, Perloski M, Liberg O, Arnemo JM, Hedhammar A, Lindblad-Toh K (2013) The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature 495:360–364

    Article  CAS  PubMed  Google Scholar 

  • Bai X, McPhearson T, Cleugh H, Nagendra H, Tong X, Zhu T, Zhu Y-G (2017) Linking urbanization and the environment: conceptual and empirical advances. Annu Rev Environ Resour 42:215–240

    Article  Google Scholar 

  • Bailly J, Scheifler R, Berthe S, Clément-Demange V, Leblond M, Pasteur B, Faivre B (2016) From eggs to fledging: negative impact of urban habitat on reproduction in two tit species. J Ornithol 157:377–392

    Article  Google Scholar 

  • Balon EK (1995) Origin and domestication of the wild carp, Cyprinus carpio: from Roman gourmets to the swimming flowers. Aquaculture 129:3–48

    Article  Google Scholar 

  • Barrera-Redondo J, Piñero D, Eguiarte LE (2020) Genomic, transcriptomic and epigenomic tools to study the domestication of plants and animals: a field guide for beginners. Front Genet 11:742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell DB (2002) Modern breeds of chickens. In: Bell DB, Weaver WD (eds) Commercial chicken meat and egg production, 5th edn. Springer Science and Business Media, Boston, pp 31–40

    Chapter  Google Scholar 

  • Belyaev DK (1979) Destabilizing selection as a factor in domestication. J Hered 70:301–308

    Article  CAS  PubMed  Google Scholar 

  • Berger J, Swenson JE, Persson IL (2001) Recolonizing carnivores and naïve prey: conservation lessons from Pleistocene extinctions. Science 291:1036–1039

    Article  CAS  PubMed  Google Scholar 

  • Bermúdez-Cuamatzin E, Ríos-Chelén AA, Gil D, Garcia CM (2011) Experimental evidence for real-time song frequency shift in response to urban noise in a passerine bird. Biol Lett 7:36–38

    Article  PubMed  Google Scholar 

  • Bernanke J, Köhler H-R (2009) The impact of environmental chemicals on wildlife vertebrates. Rev Environ Contam Toxicol 198:1–47

    CAS  PubMed  Google Scholar 

  • Berthouly C, Leroy G, Van TN et al (2009) Genetic analysis of local Vietnamese chickens provides evidence of gene flow from wild to domestic populations. BMC Genet 10:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bester AJ, Priddel D, Klomp NI, Carlile N, O’Neill LE (2007) Reproductive success of the Providence Petrel Pterodroma solandri on Lord Howe Island, Australia. Mar Ornithol 35:21–28

    Google Scholar 

  • Blair RB (1996) Land use and avian species diversity along an urban gradient. Ecol Appl 6:506–519

    Article  Google Scholar 

  • Boivin NL, Zeder MA, Fuller DQ, Crowther A, Larson G, Erlandson JM, Denham T, Petraglia MD (2016) Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. P Natl Acad Sci USA 113:6388–6396

    Article  CAS  Google Scholar 

  • Bollongino R, Burger J, Powell A, Mashkour A, Vigne J, Thomas MG (2012) Modern taurine cattle descended from small number of Near-Eastern founders. Mol Biol Evol 29:2101–2104

    Article  CAS  PubMed  Google Scholar 

  • Bolstad GH, Hindar K, Robertsen G et al (2017) Gene flow from domesticated escapes alters the life history of wild Atlantic salmon. Nat Ecol Evol 1:124

    Article  PubMed  Google Scholar 

  • Bosse M, Spurgin LG, Laine VN et al (2017) Recent natural selection causes adaptive evolution of an avian polygenic trait. Science 358:365–368

    Article  CAS  PubMed  Google Scholar 

  • Bosse M, Megens H, Derks MFL, de Cara AMR, Groenen MAM (2019) Deleterious alleles in the context of domestication, inbreeding, and selection. Evol Appl 12:6–17

    Article  PubMed  Google Scholar 

  • Bradley CA, Altizer S (2007) Urbanization and the ecology of wildlife diseases. Trends Ecol Evol 22:95–102

    Article  PubMed  Google Scholar 

  • Brakes P, Dall SRX, Aplin LM et al (2019) Animal cultures matter for conservation. Science 363:1032–1034

    Article  CAS  PubMed  Google Scholar 

  • Breck SW, Poessel SA, Mahoney P, Young JK (2019) The intrepid urban coyote: a comparison of bold and exploratory behavior in coyotes from urban and rural environments. Sci Rep 9:2104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Broughton JM, Weitzel EM (2018) Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions. Nat Commun 9:5441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brubaker AS, Coss RG (2015) Evolutionary constraints on equid domestication: comparison of flight initiation distances of wild horses (Equus caballus ferus) and plains zebras (Equus quagga). J Comp Psychol 129:366–376

    Article  PubMed  Google Scholar 

  • Cabrera-Cruz SA, Smolinsky JA, Buler JJ (2018) Light pollution is greatest within migration passage areas for nocturnally-migrating birds around the world. Sci Rep 8:3261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Candolin U, Wong BBM (2019) Mate choice in a polluted world: consequences for individuals, populations and communities. Phil Trans R Soc B 374:20180055

    Article  PubMed  PubMed Central  Google Scholar 

  • Caro T, Sherman PW (2012) Vanishing behaviors. Conserv Lett 5:159–166

    Article  Google Scholar 

  • Chace JF, Walsh JJ (2006) Urban effects on native avifauna: a review. Landsc Urban Plan 74:46–69

    Article  Google Scholar 

  • Chen N, Cai Y, Chen Q et al (2018) Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia. Nat Commun 9:2337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clancey E, Byers JA (2014) The definition and measurement of individual condition in evolutionary studies. Ethology 120:845–854

    Article  Google Scholar 

  • Courtney Jones SK, Munn AJ, Byrne PG (2018) Effect of captivity on morphology: negligible changes in external morphology mask significant changes in internal morphology. R Soc Open Sci 5:172470

    Article  PubMed  PubMed Central  Google Scholar 

  • Crates R, Langmore N, Ranjard L, Stojanovic D, Rayner L, Ingwersen D, Heinsohn R (2021) Loss of vocal culture and fitness costs in a critically endangered songbird. Proc R Soc B 288:20210225

    Article  PubMed  PubMed Central  Google Scholar 

  • Crockford S (2002) Animal domestication and heterochronic speciation. In: Minugh-Purvis N, McNamara KJ (eds) Human evolution through developmental change. John Hopkins University Press, Baltimore, pp 122–153

    Google Scholar 

  • Crutzen PJ (2006) The Anthropocene. In: Ehlers E, Krafft T (eds) Earth system science in the Anthropocene. Springer, Berlin, pp 13–18

    Chapter  Google Scholar 

  • Cruz F, Vilà C, Webster MT (2008) The legacy of domestication: accumulation of deleterious mutations in the dog genome. Mol Biol Evol 25:2331–2336

    Article  CAS  PubMed  Google Scholar 

  • Daly KG, Mattiangeli V, Hare AJ et al (2021) Herded and hunted goat genomes from the dawn of domestication in the Zagros Mountains. P Natl Acad Sci USA 118:e2100901118

    Article  CAS  Google Scholar 

  • Darwin C (1868) The variation of animals and plants under domestication. John Murray, London

    Google Scholar 

  • Deak BP, Ostendorf B, Taggart DA, Peacock DE, Bardsley DK (2019) The significance of social perceptions in implementing successful feral cat management strategies: a global review. Animals 9:617

    Article  PubMed Central  Google Scholar 

  • Di Franco E, Pierson P, Di Iorio L et al (2020) Effects of marine noise pollution on Mediterranean fishes and invertebrates: a review. Mar Pollut Bull 159:111450

    Article  PubMed  CAS  Google Scholar 

  • Diamond J (2002) Evolution, consequences and future of plant and animal domestication. Nature 418:700–707

    Article  CAS  PubMed  Google Scholar 

  • Diamond J (2003) Farmers and their languages: the first expansions. Science 300:597–603

    Article  CAS  PubMed  Google Scholar 

  • Ditchkoff SS, Saalfeld ST, Gibson CJ (2006) Animal behavior in urban ecosystems: modifications due to human-induced stress. Urban Ecosyst 9:5–12

    Article  Google Scholar 

  • Double Dime Whitetails (2021) Our story. Double Dime Whitetails. https://doubledimewhitetails.com/our-story/. Accessed 21 November 2021

  • Driscoll CA, Menotti-Raymond M, Roca AL et al (2007) The Near Eastern origin of cat domestication. Science 317:519–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driscoll CA, Macdonald DW, O’Brien SJ (2009) From wild animals to domestic pets, an evolutionary view of domestication. P Natl Acad Sci USA 106(Suppl 1):9971–9978

    Article  CAS  Google Scholar 

  • Fages A, Hanghøj K, Khan N et al (2019) Tracking five millennia of horse management with extensive ancient genome time series. Cell 177:1419-1435.e31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farquharson KA, Hogg CJ, Grueber CE (2021) Offspring survival changes over generations of captive breeding. Nat Commun 12:3045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrer M, Morandini V, Baguena G, Newton I (2017) Reintroducing endangered raptors: a case study of supplementary feeding and removal of nestlings from wild populations. J Appl Ecol 55:1360–1367

    Article  Google Scholar 

  • Festa-Bianchet M (2017) When does selective hunting select, how can we tell, and what should we do about it? Mamm Rev 47:76–81

    Article  Google Scholar 

  • Fitak RR, Mohandesan E, Corander J et al (2020) Genomic signatures of domestication in Old World camels. Commun Biol 3:316

    Article  PubMed  PubMed Central  Google Scholar 

  • Francis CD, Ortega CP, Cruz A (2011) Noise pollution filters bird communities based on vocal frequency. PLoS ONE 6:e27052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frankham R, Hemmer H, Ryder OA, Cothran EG, Soulé ME, Murray ND, Snyder M (1986) Selection in captive populations. Zoo Biol 5:127–138

    Article  Google Scholar 

  • Frantz LAF, Schraiber JG, Madsen O, Megens H, Cagan A, Bosse M, Paudel Y, Crooijmans RPMA, Larson G, Groenen MAM (2015) Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. Nat Genet 47:1141–1148

    Article  CAS  PubMed  Google Scholar 

  • Frantz LAF, Bradley DG, Larson G, Orlando L (2020) Animal domestication in the era of ancient genomics. Nat Rev Genet 21:449–460

    Article  CAS  PubMed  Google Scholar 

  • Gabor CR, Davis DR, Kim DS, Zabierek KC, Bendik NF (2018) Urbanization is associated with elevated corticosterone in Jollyville Plateau salamanders. Ecol Indic 85:229–235

    Article  Google Scholar 

  • Gaunitz C, Fages A, Hanghøj K et al (2018) Ancient genomes revisit the ancestry of domestic and Przewalski’s horses. Science 360:111–114

    Article  CAS  PubMed  Google Scholar 

  • Geiger M, Sánchez-Villagra MR, Lindholm AK (2018) A longitudinal study of phenotypic changes in early domestication of house mice. R Soc Open Sci 5:172099

    Article  PubMed  PubMed Central  Google Scholar 

  • Gering E, Johnsson M, Willis P, Getty T, Wright D (2015) Mixed ancestry and admixture in Kauai’s feral chickens: invasion of domestic genes into ancient Red Junglefowl reservoirs. Mol Ecol 24:2112–2124

    Article  CAS  PubMed  Google Scholar 

  • Gering E, Incorvaia D, Henriksen R, Conner J, Getty T, Wright D (2019) Getting back to nature: feralization in animals and plants. Trends Ecol Evol 34:1137–1151

    Article  PubMed  PubMed Central  Google Scholar 

  • Greig EI, Wood EM, Bonter DN (2017) Winter range expansion of a hummingbird is associated with urbanization and supplementary feeding. Proc R Soc B 284:20170256

    Article  PubMed  PubMed Central  Google Scholar 

  • Guarino L, Lobell DB (2011) A walk on the wild side. Nat Clim Change 1:374–375

    Article  Google Scholar 

  • Hammer K (1984) Das Domestikationssyndrom. Kulturpflanze 32:11–34

    Article  Google Scholar 

  • Heath DD, Heath JW, Bryden CA, Johnson RM, Fox CW (2003) Rapid evolution of egg size in captive salmon. Science 299:1738–1740

    Article  CAS  PubMed  Google Scholar 

  • Heikkinen ME, Ruokonen M, White TA, Alexander MM, Gündüz I, Dobney KM, Aspi J, Searle JB, Pyhäjärvi T (2020) Long-term reciprocal gene flow in wild and domestic geese reveals complex domestication history. G3 10:3061–3070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helmer D, Gourichon L, Monchot H, Peters J, Saña Segui M (2005) Identifying early domestic cattle from Pre-Pottery Neolithic sites on the Middle Euphrates using sexual dimorphism. In: Vigne J-D, Peters J, Helmer D (eds) First steps of animal domestication new archaeozoological approaches. Oxbow Books, Oxford, pp 86–95

    Google Scholar 

  • Herrero S, Smith T, DeBruyn TD, Gunther K, Matt CA (2005) Brown bear habituation to people—safety, risks, and benefits. Wildlife Soc B 33:362–373

    Article  Google Scholar 

  • Hone J (1995) Spatial and temporal aspects of vertebrate pest damage with emphasis on feral pigs. J Appl Ecol 32:311–319

    Article  Google Scholar 

  • Hou Y, Qi F, Bai X, Ren T, Shen X, Chu Q, Zhang X, Lu X (2020) Genome-wide analysis reveals molecular convergence underlying domestication in 7 bird and mammals. BMC Genomics 21:204

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussein AAA, Bloem E, Fodor I, Baz E, Tadros MM, Soliman MFM, El-Shenawy NS, Koene JM (2021) Slowly seeing the light: an integrative review on ecological light pollution as a potential threat for mollusks. Environ Sci Pollut Res Int 28:5036–5048

    Article  PubMed  Google Scholar 

  • Jacobs MH (2009) Why do we like or dislike animals? Hum Dimens Wildl 14:1–11

    Article  Google Scholar 

  • Johnson MTJ, Munshi-South J (2017) Evolution of life in urban environments. Science 358:eaam8327

    Article  PubMed  CAS  Google Scholar 

  • Johnsson M, Gering E, Willis P, Lopez S, Van Dorp L, Hellenthal G, Henriksen R, Friberg U, Wright D (2016) Feralisation targets different genomic loci to domestication in the chicken. Nat Commun 7:12950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnsson M, Henriksen R, Wright D (2021) The neural crest cell hypothesis: no unified explanation for domestication. Genetics 219:iyab097

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamaluddin SN, Tanaka M, Wakamori H, Nishimura T, Ito T (2019) Phenotypic plasticity in the mandibular morphology of Japanese macaques: captive-wild comparison. R Soc Open Sci 6:181382

    Article  PubMed  PubMed Central  Google Scholar 

  • Kight CR, Swaddle JP (2011) How and why environmental noise impacts animals: an integrative, mechanistic review. Ecol Lett 14:1052–1061

    Article  PubMed  Google Scholar 

  • Kim M-S, Lozano R, Kim JH et al (2021) The patterns of deleterious mutations during the domestication of soybean. Nat Commun 12:97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruska D (1996) The effect of domestication on brain size and composition in the mink (Mustela vison). J Zool 239:645–661

    Article  Google Scholar 

  • Kuehne LM, Padgham BL, Olden JD (2013) The soundscapes of lakes across an urbanization gradient. PLoS ONE 8:e55661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacy RC (1997) Importance of genetic variation to the viability of mammalian populations. J Mammal 78:320–335

    Article  Google Scholar 

  • Larson G, Burger J (2013) A population genetics view of animal domestication. Trends Genet 29:197–205

    Article  CAS  PubMed  Google Scholar 

  • Larson G, Fuller DQ (2014) The evolution of animal domestication. Annu Rev Ecol Evol S 45:115–136

    Article  Google Scholar 

  • Lau AN, Peng L, Goto H, Chemnick L, Ryder OA, Makova KD (2009) Horse domestication and conservation genetics of Przewalski’s horse inferred from sex chromosomal and autosomal sequences. Mol Biol Evol 26:199–208

    Article  CAS  PubMed  Google Scholar 

  • Leclerc M, Zedrosser A, Swenson JE, Pelletier F (2019) Hunters select for behavioral traits in a large carnivore. Sci Rep 9:12371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legagneux P, Ducatez S (2013) European birds adjust their flight initiation distance to road speed limits. Biol Lett 9:20130417

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis SL, Maslin MA (2015) Defining the Anthropocene. Nature 519:171–180

    Article  CAS  PubMed  Google Scholar 

  • Loi P, Ptak G, Barboni B, Fulka J Jr, Cappai P, Clinton M (2001) Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. Nat Biotechnol 19:962–964

    Article  CAS  PubMed  Google Scholar 

  • López ME, Benestan L, Moore J-S et al (2019) Comparing genomic signatures of domestication in two Atlantic salmon (Salmo salar L.) populations with different geographical origins. Evol Appl 12:137–156

    Article  PubMed  Google Scholar 

  • Lord KA, Larson G, Coppinger RP, Karlsson EK (2020) The history of farm foxes undermines the animal domestication syndrome. Trends Ecol Evol 35:125–136

    Article  PubMed  Google Scholar 

  • Lorenz K (1935) Der Kumpan in der Umwelt des Vogels. J Ornithol 83:137–213

    Article  Google Scholar 

  • Lozano R, Gazave E, Dos Santos JPR et al (2021) Comparative evolutionary genetics of deleterious load in sorghum and maize. Nat Plants 7:17–24

    Article  CAS  PubMed  Google Scholar 

  • Makino T, Rubin CJ, Carneiro M, Axelsson E, Andersson L, Webster MT (2018) Elevated proportions of deleterious genetic variation in domestic animals and plants. Genome Biol Evol 10:276–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marler P (1991) The instinct to learn. In: Carey S, Gelman R (eds) The epigenesis of mind: essays on biology and cognition. Lawrence Erlbaum Associates, Hillsdale, pp 37–66

    Google Scholar 

  • Marshall FB, Dobney K, Denham T, Capriles JM (2014) Evaluating the roles of directed breeding and gene flow in animal domestication. P Natl Acad Sci USA 111:6153–6158

    Article  CAS  Google Scholar 

  • Mason G, Burn CC, Dallaire JA, Kroshko J, McDonald Kinkaid H, Jeschke JM (2013) Plastic animals in cages: behavioural flexibility and responses to captivity. Anim Behav 85:1113–1126

    Article  Google Scholar 

  • Milot E, Perrier C, Papillon L, Dodson JJ, Bernatchez L (2013) Reduced fitness of Atlantic salmon released in the wild after one generation of captive breeding. Evol Appl 6:472–485

    Article  PubMed  Google Scholar 

  • Mock KE, Latch EK, Rhodes OE (2004) Assessing losses of genetic diversity due to translocation: long-term case histories in Merriam’s turkey (Meleagris gallopavo merriami). Conserv Genet 5:631–645

    Article  Google Scholar 

  • Møller AP (2010) Interspecific variation in fear responses predicts urbanization in birds. Behav Ecol 21:365–371

    Article  Google Scholar 

  • Mowry CB, Wilson LA, von Holdt BM (2021) Interface of human/wildlife interactions: an example of a bold Coyote (Canis latrans) in Atlanta, GA, USA. Diversity 13:372

    Article  Google Scholar 

  • Moyers BT, Morrell PL, McKay JK (2018) Genetic costs of domestication and improvement. J Hered 109:103–116

    Article  PubMed  Google Scholar 

  • Murray C, Huerta-Sanchez E, Casey F, Bradley DG (2010) Cattle demographic history modelled from autosomal sequence variation. Phil Trans R Soc B 365:2531–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray MH, Becker DJ, Hall RJ, Hernandez SM (2016) Wildlife health and supplemental feeding: a review and management recommendations. Biol Conserv 204:163–174

    Article  Google Scholar 

  • Mysterud A (2010) Still walking on the wild side? Management actions as steps towards ‘semi-domestication’ of hunted ungulates. J Appl Ecol 47:920–925

    Article  Google Scholar 

  • Naval-Sanchez M, McWilliam S, Evans B, Yáñez JM, Houston RD, Kijas JW (2020) Changed patterns of genomic variation following recent domestication: selection sweeps in farmed Atlantic salmon. Front Genet 11:264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nosil P (2012) Ecological speciation. Oxford University Press, Oxford

    Book  Google Scholar 

  • O’Connell LA, Hofmann HA (2011) The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J Comp Neurol 519:3599–3639

    Article  PubMed  Google Scholar 

  • O’regan HJ, Kitchener AC (2005) The effects of captivity on the morphology of captive, domesticated and feral mammals. Mamm Rev 35:215–230

    Article  Google Scholar 

  • Oliveira R, Godinho R, Randi E, Alves PC (2008) Hybridization versus conservation: are domestic cats threatening the genetic integrity of wildcats (Felis silvestris silvestris) in Iberian Peninsula? Phil Trans R Soc B 363:2953–2961

    Article  PubMed  PubMed Central  Google Scholar 

  • Olsen SL (2006) Early horse domestication on the Eurasian steppe. In: Olsen SL, Zeder MA (eds) Documenting domestication. University of California Press, Berkeley, pp 245–269

    Google Scholar 

  • O’Sullivan RJ, Aykanat T, Johnston SE, Rogan G, Poole R, Prodöhl PA, de Eyto E, Primmer CR, McGinnity P, Reed TE (2020) Captive-bred Atlantic salmon released into the wild have fewer offspring than wild-bred fish and decrease population productivity. Proc R Soc B 287:20201671

    Article  PubMed  PubMed Central  Google Scholar 

  • Parker KA, Anderson MJ, Jenkins PF, Brunton DH (2012) The effects of translocation-induced isolation and fragmentation on the cultural evolution of bird song. Ecol Lett 15:778–785

    Article  PubMed  Google Scholar 

  • Parsons KJ, Rigg A, Conith AJ, Kitchener AC, Harris S, Zhu H (2020) Skull morphology diverges between urban and rural populations of red foxes mirroring patterns of domestication and macroevolution. Proc R Soc B 287:20200763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peach WJ, Vincent KE, Fowler JA, Grice PV (2008) Reproductive success of house sparrows along an urban gradient. Anim Conserv 11:493–503

    Article  Google Scholar 

  • Raap T, Pinxten R, Eens M (2015) Light pollution disrupts sleep in free-living animals. Sci Rep 5:13557

    Article  PubMed  PubMed Central  Google Scholar 

  • Reading RP, Miller B, Shepherdson D (2013) The value of enrichment to reintroduction success. Zoo Biol 32:332–341

    Article  PubMed  Google Scholar 

  • Reddiex B, Forsyth DM, McDonald-Madden E, Einoder LD, Griffioen PA, Chick RR, Robley AJ (2006) Control of pest mammals for biodiversity protection in Australia. I. Patterns of control and monitoring. Wildlife Res 33:691

    Article  Google Scholar 

  • Reinhardt UG (2001) Selection for surface feeding in farmed and sea-ranched Masu salmon juveniles. Trans Am Fish Soc 130:155–158

    Article  Google Scholar 

  • Rivrud IM, Sonkoly K, Lehoczki R, Csányi S, Storvik GO, Mysterud A (2013) Hunter selection and long-term trend (1881–2008) of red deer trophy sizes in Hungary. J Appl Ecol 50:168–180

    Article  Google Scholar 

  • Robertson BA, Rehage JS, Sih A (2013) Ecological novelty and the emergence of evolutionary traps. Trends Ecol Evol 28:552–560

    Article  PubMed  Google Scholar 

  • Roche C (2008) “the fertile brain and inventive power of man”: Anthropogenic factors in the cessation of springbok treks and the disruption of the karoo ecosystem, 1865–1908. Africa 78:157–188

    Article  Google Scholar 

  • Rosenblum EB, Parent CE, Brandt EE (2014) The molecular basis of phenotypic convergence. Annu Rev Ecol Evol S 45:203–226

    Article  Google Scholar 

  • Rosenthal G (2017) Mate choice. Princeton University Press, Princeton

    Book  Google Scholar 

  • Ruscoe WA, Brown PR, Henry S, van de Weyer N, Robinson F, Hinds LA, Singleton GR (2021) Conservation agriculture practices have changed habitat use by rodent pests: implications for management of feral house mice. J Pest Sci 95:493–503

    Article  Google Scholar 

  • Sánchez-Villagra MR, Geiger M, Schneider RA (2016) The taming of the neural crest: a developmental perspective on the origins of morphological covariation in domesticated mammals. R Soc Open Sci 3:160107

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandler RL, Moses L, Wisely SM (2021) An ethical analysis of cloning for genetic rescue: case study of the black-footed ferret. Biol Conserv 257:109118

    Article  Google Scholar 

  • Sato DX, Rafati N, Ring H et al (2020) Brain transcriptomics of wild and domestic rabbits suggests that changes in dopamine signaling and ciliary function contributed to evolution of tameness. Genome Biol Evol 12:1918–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt C, Domaratzki M, Kinnunen RP, Bowman J, Garroway CJ (2020) Continent-wide effects of urbanization on bird and mammal genetic diversity. Proc R Soc B 287:20192497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert M, Jónsson H, Chang D et al (2014) Prehistoric genomes reveal the genetic foundation and cost of horse domestication. P Natl Acad Sci USA 111:E5661–E5669

    CAS  Google Scholar 

  • Scolozzi R, Geneletti D (2012) A multi-scale qualitative approach to assess the impact of urbanization on natural habitats and their connectivity. Environ Impact Assess 36:9–22

    Article  Google Scholar 

  • Shackelford L, Marshall F, Peters J (2013) Identifying donkey domestication through changes in cross-sectional geometry of long bones. J Archaeol Sci 40:4170–4179

    Article  Google Scholar 

  • Siciliano-Martina L, Light JE, Lawing AM (2021) Changes in canid cranial morphology induced by captivity and conservation implications. Biol Conserv 257:109143

    Article  Google Scholar 

  • Siegel HI (2012) The hamster: reproduction and behavior. Springer US, Boston

    Google Scholar 

  • Signer-Hasler H, Burren A, Neuditschko M, Frischknecht M, Garrick D, Stricker C, Gredler B, Bapst B, Flury C (2017) Population structure and genomic inbreeding in nine Swiss dairy cattle populations. Genet Sel Evol 49:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Sih A (2013) Understanding variation in behavioural responses to human-induced rapid environmental change: a conceptual overview. Anim Behav 85:1077–1088

    Article  Google Scholar 

  • Sih A, Stamps J, Yang LH, McElreath R, Ramenofsky M (2010) Behavior as a key component of integrative biology in a human-altered world. Integr Comp Biol 50:934–944

    Article  PubMed  Google Scholar 

  • Silva CP, Sepúlveda RD, Barbosa O (2016) Nonrandom filtering effect on birds: species and guilds response to urbanization. Ecol Evol 6:3711–3720

    Article  PubMed  PubMed Central  Google Scholar 

  • Skaala Ø, Wennevik V, Glover KA (2006) Evidence of temporal genetic change in wild Atlantic salmon, Salmo salar L., populations affected by farm escapees. ICES J Mar Sci 63:1224–1233

    Article  CAS  Google Scholar 

  • Small E (2012) The new Noah’s Ark: beautiful and useful species only. Part 2. The Chosen Species Biodiversity 13:37–53

    Google Scholar 

  • Smith FA, Elliott Smith RE, Lyons SK, Payne JL (2018) Body size downgrading of mammals over the late Quaternary. Science 360:310–313

    Article  CAS  PubMed  Google Scholar 

  • Snoj A, Razpet A, Tomljanović T, Treer T, Sušnik S (2006) Genetic composition of the Jadro softmouth trout following translocation into a new habitat. Conserv Genet 8:1213

    Article  Google Scholar 

  • Sol D, Lapiedra O, González-Lagos C (2013) Behavioural adjustments for a life in the city. Anim Behav 85:1101–1112

    Article  Google Scholar 

  • Solberg MF, Robertsen G, Sundt-Hansen LE, Hindar K, Glover KA (2020) Domestication leads to increased predation susceptibility. Sci Rep 10:1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens D, Wilton AN, Fleming PJS, Berry O (2015) Death by sex in an Australian icon: a continent-wide survey reveals extensive hybridization between dingoes and domestic dogs. Mol Ecol 24:5643–5656

    Article  CAS  PubMed  Google Scholar 

  • Sullivan AP, Bird DW, Perry GH (2017) Human behaviour as a long-term ecological driver of non-human evolution. Nat Ecol Evol 1:65

    Article  PubMed  Google Scholar 

  • Sutter NB, Ostrander EA (2004) Dog star rising: the canine genetic system. Nat Rev Genet 5:900–910

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Ikebuchi M, Bischof H-J, Okanoya K (2014) Behavioral and neural trade-offs between song complexity and stress reaction in a wild and a domesticated finch strain. Neurosci Biobehav Rev 46:547–556

    Article  PubMed  Google Scholar 

  • Todesco M, Pascual MA, Owens GL et al (2016) Hybridization and extinction. Evol Appl 9:892–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trut L (1999) Early canid domestication: the farm-fox experiment. Am Sci 87:160–169

    Article  Google Scholar 

  • Trut L, Oskina I, Kharlamova A (2009) Animal evolution during domestication: the domesticated fox as a model. BioEssays 31:349–360

    Article  PubMed  PubMed Central  Google Scholar 

  • Tufto J (2017) Domestication and fitness in the wild: a multivariate view. Evolution 71:2262–2270

    Article  PubMed  Google Scholar 

  • van der Marel A, Waterman JM, López-Darias M (2021) Exploring the role of life history traits and introduction effort in understanding invasion success in mammals: a case study of Barbary ground squirrels. Oecologia 195:327–339

    Article  PubMed  Google Scholar 

  • Van Doren BM, Horton KG, Dokter AM, Klinck H, Elbin SB, Farnsworth A (2017) High-intensity urban light installation dramatically alters nocturnal bird migration. P Natl Acad Sci USA 114:11175–11180

    Article  CAS  Google Scholar 

  • Vilà C, Savolainen P, Maldonado JE, Amorim IR, Rice JE, Honeycutt RL, Crandall KA, Lundeberg J, Wayne RK (1997) Multiple and ancient origins of the domestic dog. Science 276:1687–1689

    Article  PubMed  Google Scholar 

  • vonHoldt BM, Pollinger JP, Lohmueller KE et al (2010) Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature 464:898–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • vonHoldt BM, Ji SS, Aardema ML, Stahler DR, Udell MAR, Sinsheimer JS (2018) Activity of genes with functions in human Williams-Beuren syndrome is impacted by mobile element insertions in the gray wolf genome. Genome Biol Evol 10:1546–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner DL, Grames EM, Forister ML, Berenbaum MR, Stopak D (2021) Insect decline in the Anthropocene: death by a thousand cuts. P Natl Acad Sci USA 118:e2023989118

    Article  CAS  Google Scholar 

  • Wang GD, Xie HB, Peng MS, Irwin D, Zhang YP (2014) Domestication genomics: evidence from animals. Annu Rev Anim Biosci 2:65–84

    Article  CAS  PubMed  Google Scholar 

  • Wang MS, Otecko NO, Wang S, Wu DD, Yang MM, Xu YL, Murphy RW, Peng MS, Zhang YP (2017) An evolutionary genomic perspective on the breeding of dwarf chickens. Mol Biol Evol 34:3081–3088

    Article  CAS  PubMed  Google Scholar 

  • Warmuth V, Eriksson A, Bower MA et al (2012) Reconstructing the origin and spread of horse domestication in the Eurasian steppe. P Natl Acad Sci USA 109:8202–8206

    Article  CAS  Google Scholar 

  • Wilkins AS (2017) Revisiting two hypotheses on the “domestication syndrome” in light of genomic data. Vavilov J Genet Breed 21:435–442

    Article  Google Scholar 

  • Wilkins AS (2020) A striking example of developmental bias in an evolutionary process: the “domestication syndrome.” Evol Dev 22:143–153

    Article  PubMed  Google Scholar 

  • Wilkins AS, Wrangham RW, Fitch WT (2014) The “domestication syndrome” in mammals: a unified explanation based on neural crest cell behavior and genetics. Genetics 197:795–808

    Article  PubMed  PubMed Central  Google Scholar 

  • Winchell KM, Carlen EJ, Puente-Rolón AR, Revell LJ (2018) Divergent habitat use of two urban lizard species. Ecol Evol 8:25–35

    Article  PubMed  Google Scholar 

  • Zala SM, Penn DJ (2004) Abnormal behaviours induced by chemical pollution: a review of the evidence and new challenges. Anim Behav 68:649–664

    Article  Google Scholar 

  • Zeder MA (2012) The domestication of animals. J Anthropol Res 68:161–190

    Article  Google Scholar 

  • Zeder MA (2018) Why evolutionary biology needs anthropology: evaluating core assumptions of the extended evolutionary synthesis. Evol Anthropol 27:267–284

    Article  PubMed  Google Scholar 

  • Zeder MA (2020) Straw foxes: domestication syndrome evaluation comes up short. Trends Ecol Evol 35:647–649

    Article  PubMed  Google Scholar 

  • Zhang M-Q, Xu X, Luo S-J (2014) The genetics of brown coat color and white spotting in domestic yaks (Bos grunniens). Anim Genet 45:652–659

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Jia Y, Almeida P et al (2018) Whole-genome resequencing reveals signatures of selection and timing of duck domestication. Gigascience 7:giy027

    PubMed Central  Google Scholar 

  • Zhou L, Dickinson RE, Tian Y, Fang J, Li Q, Kaufmann RK, Tucker CJ, Myneni RB (2004) Evidence for a significant urbanization effect on climate in China. P Natl Acad Sci USA 101:9540–9544

    Article  CAS  Google Scholar 

  • Zuk M, Spencer HG (2020) Killing the behavioral zombie: genes, evolution, and why behavior isn’t special. Bioscience 70:515–520

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the associate editors for this collection, Dr. Caitlin Gabor, Dr. Jan Lindstrom, and Dr. Constantino Macías Garcia, for inviting us to contribute and being flexible throughout the publication process. We would also like to extend additional thanks to the photographers named in the caption of Fig. 2 that provided photos. Last, we would like to thank members of the Rosenthal lab and two anonymous reviewers for their improvements to the manuscript.

Funding

GGR was supported by NSF IOS-1755327 and by a Texas A&M University (TAMU) Chancellor EDGES fellowship. TAMU’s Biology Department supported AKB and TAMU’s Ecology and Conservation Biology Department supported BMSR.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the conception, writing, and editing of the manuscript.

Corresponding author

Correspondence to Amanda K. Beckman.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by C. Macías Garcia

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the Topical Collection Using behavioral ecology to explore adaptive responses to anthropogenic change—Guest Editors: Jan Lindström, Constantino Macías Garcia, Caitlin Gabor.

Amanda K. Beckman and Breann M. S. Richey are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beckman, A.K., Richey, B.M.S. & Rosenthal, G.G. Behavioral responses of wild animals to anthropogenic change: insights from domestication. Behav Ecol Sociobiol 76, 105 (2022). https://doi.org/10.1007/s00265-022-03205-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00265-022-03205-6

Keywords

Navigation