Skip to main content
Log in

Determinants, selection and heritability of docility in wild eastern chipmunks (Tamias striatus)

  • Original Article
  • Published:
Behavioral Ecology and Sociobiology Aims and scope Submit manuscript

Abstract

Many behavioural traits show important inter-individual phenotypic and genetic variation despite strong potential selection that should reduce this variability. Spatial and temporal heterogeneity in environmental conditions has been proposed to maintain such variation but empirical evidences supporting this hypothesis are still scarce for behavioural traits. Here, we analysed the repeatability and the ecological and individual factors that influence the expression of docility across different environmental contexts in wild eastern chipmunks (Tamias striatus) studied over a period of 10 years. We also estimated the heritability of docility and the patterns of viability selection acting on this trait for adults and juveniles. Docility was moderately repeatable among various contexts and was positively affected by age, was higher in males than that in females, was higher during the fall and decreased with population density. Heritability of docility was low at 0.17. We found disruptive selection for the survival of adults only, individuals more or less docile than average having a higher survival. Our study confirms that docility is both phenotypically and genetically variables and that disruptive selection might maintain the variability in this trait.

Significance statement

Documenting the factors allowing the maintenance of phenotypic and genetic variation of behavioural traits within natural populations is a central objective in ecology and evolution. Here, we studied a wild eastern chipmunk population over 10 years and recorded docility, a personality trait, on both juveniles and adults. We showed that docility was repeatable and that it was also heritable and influenced by different individual and environmental factors. Importantly, we also found that disruptive viability selection was acting on adult docility independently of environmental variations. Our results show that docility is both phenotypically and genetically variable and that patterns of selection acting on this trait can maintain personality heterogeneity across temporally varying environmental conditions in the wild.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson SJ, Fike JA, Dharmarajan G, Rhodes OEJ (2007) Characterization of 12 polymorphic microsatellite loci for eastern chipmunks (Tamias striatus). Mol Ecol Notes 7:513–515

    Article  CAS  Google Scholar 

  • Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 1:1–48

    Google Scholar 

  • Bell AM, Hankison SJ, Laskowski KL (2009) The repeatability of behaviour: a meta-analysis. Anim Behav 77:771–783

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell G (2010) Fluctuating selection: the perpetual renewal of adaptation in variable environments. Philos T Roy Soc B 365:87–97

    Article  Google Scholar 

  • Bergeron P, Montiglio PO, Réale D, Humphries MM, Gimenez O, Garant D (2013) Disruptive viability selection on adult exploratory behaviour in eastern chipmunks. J Evol Biol 26:766–774

    Article  CAS  PubMed  Google Scholar 

  • Bergeron P, Réale D, Humphries MM, Garant D (2011a) Anticipation and tracking of pulsed resources drive population dynamics in eastern chipmunks. Ecology 92:2027–2034

    Article  PubMed  Google Scholar 

  • Bergeron P, Réale D, Humphries MM, Garant D (2011b) Evidence of multiple paternity and mate selection for inbreeding avoidance in wild eastern chipmunks. J Evol Biol 24:1685–1694

    Article  CAS  PubMed  Google Scholar 

  • Biro PA, Stamps JA (2008) Are animal personality traits linked to life-history productivity? Trends Ecol Evol 23:361–368

    Article  PubMed  Google Scholar 

  • Boake CRB (1989) Repeatability: its role in evolutionary studies of mating behavior. Evol Ecol 3:173–182

    Article  Google Scholar 

  • Boon AK, Réale D, Boutin S (2007) The interaction between personality, offspring fitness and food abundance in North American red squirrels. Ecol Lett 10:1094–1104

    Article  PubMed  Google Scholar 

  • Burnham K, Anderson D (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

  • Calsbeek R, Smith TB (2008) Experimentally replicated disruptive selection on performance traits in a Caribbean lizard. Evolution 62:478–484

    Article  PubMed  Google Scholar 

  • Careau V, Bergeron P, Garant D, Réale D, Speakman JR, Humphries MM (2013) The energetic and survival costs of growth in free-ranging chipmunks. Oecologia 171:11–23

    Article  PubMed  Google Scholar 

  • Careau V, Montiglio P-O, Garant D, Pelletier F, Speakman JR, Humphries MM, Réale D (2015) Energy expenditure and personality in wild chipmunks. Behav Ecol Sociobiol 69:653–661

    Article  Google Scholar 

  • Careau V, Thomas DW, Humphries MM (2010) Energetic cost of bot fly parasitism in free-ranging eastern chipmunks. Oecologia 162:303–312

    Article  PubMed  Google Scholar 

  • Chambers JL, Garant D (2010) Determinants of population genetic structure in eastern chipmunks (Tamias striatus): the role of landscape and sex-biaised dispersal. J Hered 101:413–422

    Article  CAS  PubMed  Google Scholar 

  • Choquet R, Lebreton J-D, Gimenez O, Reboulet AM, Pradel R (2009a) U-CARE: utilities for performing goodness of fit tests and manipulating CApture–REcapture data. Ecography 32:1071–1074

    Article  Google Scholar 

  • Choquet R, Rouan L, Pradel R (2009b) Program E-SURGE: a software application for fitting multievent models. In: Thomson DL, Cooch EG, Conroy MJ (eds) Modeling demographic processes in marked populations. Springer US, New York, pp 845–865

    Chapter  Google Scholar 

  • Class B, Kluen E, Brommer JE (2014) Evolutionary quantitative genetics of behavioral responses to handling in a wild passerine. Ecol Evol 4:427–440

    Article  PubMed  PubMed Central  Google Scholar 

  • Dingemanse NJ (2002) Repeatability and heritability of exploratory behaviour in great tits from the wild. Anim Behav 64:929–938

    Article  Google Scholar 

  • Dingemanse NJ, Both C, Drent PJ, Tinbergen JM (2004) Fitness consequences of avian personalities in a fluctuating environment. Proc R Soc Lond B 271:847–852

    Article  Google Scholar 

  • Dingemanse NJ, Kazem AJN, Réale D, Wright J (2010) Behavioural reaction norms: animal personality meets individual plasticity. Trends Ecol Evol 25:81–89

    Article  PubMed  Google Scholar 

  • Dingemanse NJ, Réale D (2005) Natural selection and animal personality. Behaviour 142:1159–1184

    Article  Google Scholar 

  • Dingemanse NJ, Réale D (2013) What is the evidence that natural selection maintains variation in animal personalities? In: Carrere C, Maestripieri D (eds) Animal personalities: behavior, physiology, and evolution. The University of Chicago Press, Chicago, pp 201–220

    Chapter  Google Scholar 

  • Dochtermann NA, Schwab T, Sih A (2014) The contribution of additive genetic variation to personality variation: heritability of personality. Proc R Soc B 282:20142201

    Article  Google Scholar 

  • Dubuc-Messier G, Garant D, Bergeron P, Réale D (2012) Environmental conditions affect spatial genetic structures and dispersal patterns in a solitary rodent. Mol Ecol 21:5363–5373

    Article  Google Scholar 

  • Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Falconer DS, Mackay TF (1996) Introduction to quantitative genetics, 4th edn. Longman, Harlow

    Google Scholar 

  • Ferrari C, Pasquaretta C, Carere C, Cavallone E, von Hardenberg A, Réale D (2013) Testing for the presence of coping styles in a wild mammal. Anim Behav 85:1385–1396

    Article  Google Scholar 

  • Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711

    Article  CAS  PubMed  Google Scholar 

  • Griffiths RA, Foster JP (1998) The effect of social interactions on tadpole activity and growth in the British anuran amphibians (Bufo bufo, B. calamita, and Rana temporaria). J Zool 245:431–437

    Article  Google Scholar 

  • Hadfield JD (2010) MCMC methods for multi-respoinse generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33:1–22

    Article  Google Scholar 

  • Hendry AP, Huber SK, De León LF, Herrel A, Podos J (2009) Disruptive selection in a bimodal population of Darwin’s finches. Proc R Soc Lond B 276:753–759

    Article  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN, Hill CE, Hoang A, Gibert P, Beerli P (2001) The strength of phenotypic selection in natural populations. Am Nat 157:245–261

    Article  CAS  PubMed  Google Scholar 

  • Kingsolver JG, Pfennig DW (2007) Patterns and power of phenotypic selection in nature. Bioscience 57:561–572

    Article  Google Scholar 

  • Korpela K, Sundell J, Ylönen H (2011) Does personality in small rodents vary depending on population density? Oecologia 165:67–77

    Article  PubMed  Google Scholar 

  • Landry-Cuerrier M, Munro D, Thomas DW, Humphries MM (2008) Climate and resource determinants of fundamental and realized metabolic niches of hibernating chipmunks. Ecology 89:3306–3316

    Article  CAS  PubMed  Google Scholar 

  • Le Coeur C, Thibault M, Pisanu B, Thibault S, Chapuis JL, Baudry E (2015) Temporally fluctuating selection on a personality trait in a wild rodent population. Behav Ecol 26:1285–1291

    Article  Google Scholar 

  • Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk 104:116–121

    Article  Google Scholar 

  • Martin JGA, Pirotta E, Petelle MB, Blumstein DT (2017) Genetic basis of between-individual and within-individual variance of docility. J Evol Biol 30:796–805

    Article  CAS  PubMed  Google Scholar 

  • Martin JGA, Réale D (2008) Temperament, risk assessment and habituation to novelty in eastern chipmunks, Tamias striatus. Anim Behav 75:309–318

    Article  Google Scholar 

  • Montiglio P-O, Garant D, Bergeron P, Dubuc-Messier G, Réale D (2014) Pulsed resources and the coupling between life-history strategies and exploration patterns in eastern chipmunks (Tamias striatus). J Anim Ecol 83:720–728

    Article  PubMed  Google Scholar 

  • Montiglio P-O, Garant D, Pelletier F, Réale D (2012) Personality differences are related to long-term stress reactivity in a population of wild eastern chipmunks, Tamias striatus. Anim Behav 84:1071–1079

    Article  Google Scholar 

  • Montiglio P-O, Garant D, Thomas D, Réale D (2010) Individual variation in temporal activity patterns in open-field tests. Anim Behav 80:905–912

    Article  Google Scholar 

  • Munro D, Thomas DW, Humphries MM (2008) Extreme suppression of aboveground activity by a food-storing hibernator, the eastern chipmunk (Tamias striatus). Can J Zool 86:364–370

    Article  Google Scholar 

  • Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol Rev 85:935–956

    PubMed  Google Scholar 

  • Petelle MB, Martin JGA, Blumstein DT (2015) Heritability and genetic correlations of personality traits in a wild population of yellow-bellied marmots (Marmota flaviventris). J Evol Biol 28:1840–1848

    Article  CAS  PubMed  Google Scholar 

  • Petelle MB, McCoy DE, Alejandro V, Martin JG, Blumstein DT (2013) Development of boldness and docility in yellow-bellied marmots. Anim Behav 86:1147–1154

    Article  Google Scholar 

  • Peters MB, Glenn JL, Svete P, Hagen C, Tsyusko OV, Decoursey P, Lieutenant-Gosselin M, Garant D, Glenn TC (2007) Development and characterization of microsatellite loci in the eastern chipmunk (Tamias striatus). Mol Ecol Notes 7:877–879

    Article  CAS  Google Scholar 

  • Poissant J, Réale D, Martin JGA, Festa-Bianchet M, Coltman DW (2013) A quantitative trait locus analysis of personality in wild bighorn sheep. Ecol Evol 3:474–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn JL, Patrick SC, Bouwhuis S, Wilkin TA, Sheldon BC (2009) Heterogeneous selection on a heritable temperament trait in a variable environment. J Anim Ecol 78:1203–1215

    Article  PubMed  Google Scholar 

  • Réale D, Festa-Bianchet M (2003) Predator-induced natural selection on temperament in bighorn ewes. Anim Behav 65:463–470

    Article  Google Scholar 

  • Réale D, Gallant B, Leblanc M, Festa-Bianchet M (2000) Consistency of temperament in bighorn ewes and correlates with behaviour and life history. Anim Behav 60:589–597

    Article  PubMed  Google Scholar 

  • Réale D, Garant D, Humphries MM, Bergeron P, Careau V, Montiglio PO (2010) Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos T Roy Soc B 365:4051–4063

    Article  Google Scholar 

  • Réale D, Martin J, Coltman DW, Poissant J, Festa-Bianchet M (2009) Male personality, life-history strategies and reproductive success in a promiscuous mammal. J Evol Biol 22:1599–1607

    Article  PubMed  Google Scholar 

  • Réale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ (2007) Integrating animal temperament within ecology and evolution. Biol Rev 82:291–318

    Article  PubMed  Google Scholar 

  • Roff D (1997) Evolutionary quantitative genetics. Springer US, New York

    Book  Google Scholar 

  • Schuett W, Dall SRX (2009) Sex differences, social context and personality in zebra finches, Taeniopygia guttata. Anim Behav 77:1041–1050

    Article  Google Scholar 

  • Siepielski AM, DiBattista JD, Carlson SM (2009) It’s about time: the temporal dynamics of phenotypic selection in the wild. Ecol Lett 12:1261–1276

    Article  PubMed  Google Scholar 

  • Siepielski AM, Gotanda KM, Morrissey MB, Diamond SE, DiBattista JD, Carlson SM (2013) The spatial patterns of directional phenotypic selection. Ecol Lett 16:1382–1392

    Article  PubMed  Google Scholar 

  • Sih A, Bell A, Johnson JC (2004) Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol Evol 19:372–378

    Article  PubMed  Google Scholar 

  • Smith BR, Blumstein DT (2008) Fitness consequences of personality: a meta-analysis. Behav Ecol 19:448–455

    Article  Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc B 64:583–639

    Article  Google Scholar 

  • Stamps J, Groothuis TGG (2010) The development of animal personality: relevance, concepts and perspectives. Biol Rev 85:301–325

    Article  PubMed  Google Scholar 

  • Stirling DG, Réale D, Roff DA (2002) Selection, structure and the heritability of behaviour. J Evol Biol 15:277–289

    Article  Google Scholar 

  • Taylor RW, Boon AK, Dantzer B, Réale D, Humphries MM, Boutin S, Gorrell JC, Coltman DW, McAdam AG (2012) Low heritabilities, but genetic and maternal correlations between red squirrel behaviours. J Evol Biol 25:614–624

    Article  PubMed  Google Scholar 

  • Taylor RW, Boutin S, Humphries MM, McAdam AG (2014) Selection on female behaviour fluctuates with offspring environment. J Evol Biol 27:2308–2321

    Article  CAS  PubMed  Google Scholar 

  • Tremmel M, Müller C (2013) Insect personality depends on environmental conditions. Behav Ecol 24:386–392

    Article  Google Scholar 

  • van Oers K, de Jong G, van Noordwijk AJ, Kempenaers B, Drent PJ (2005a) Contribution of genetics to the study of animal personalities: a review of case studies. Behaviour 142:1185–1206

    Article  Google Scholar 

  • van Oers K, Klunder M, Drent PJ (2005b) Context dependence of personalities: risk-taking behavior in a social and a nonsocial situation. Behav Ecol 16:716–723

    Article  Google Scholar 

  • van Oers K, Sinn DL (2013) Quantitative and molecular genetics of animal personality. In: Carrere C, Maestripieri D (eds) Animal personalities: behavior, physiology, and evolution. The University of Chicago Press, Chicago, pp 149–200

    Google Scholar 

  • Webster MM, Ward AJW (2011) Personality and social context. Biol Rev 86:759–773

    Article  PubMed  Google Scholar 

  • Wilson AJ, Réale D, Clements MN et al (2010) An ecologist’s guide to the animal model. J Anim Ecol 79:13–26

    Article  PubMed  Google Scholar 

  • Wolf M, van Doorn GS, Leimar O, Weissing FJ (2007) Life-history trade-offs favour the evolution of animal personalities. Nature 447:581–584

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Murray M. Humphries, Fanie Pelletier, Patrick Bergeron and Pierre-Olivier Montiglio for their contribution to this project. We also want to thank the Ruiter Valley Land Trust and Nature Conservancy of Canada for allowing us to conduct this research on their lands. We thank two anonymous reviewers for comments on previous versions of this manuscript and all field assistants, coordinators and students who have helped to collect data in the field. This research was funded by a team grant from the Fonds de Recherche du Québec - Nature et Technologies (FRQNT) to DR, DG, M.M. Humphries and F. Pelletier; by Natural Sciences and Engineering Research Council of Canada (NSERC) discovery grants to DR, DG as well as to M.M. Humphries and F. Pelletier; and by Canada Research Chair funds to DR and F. Pelletier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dany Garant.

Ethics declarations

Ethical standards

Animals were captured and handled in compliance with the Canadian Council on Animal Care, under the approval of the Université de Sherbrooke Animal Ethics Committee (protocol number: DG2011–01-Université de Sherbrooke).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. I. Schulte-Hostedde

Electronic supplementary material

ESM 1

(DOCX 829 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

St-Hilaire, É., Réale, D. & Garant, D. Determinants, selection and heritability of docility in wild eastern chipmunks (Tamias striatus). Behav Ecol Sociobiol 71, 88 (2017). https://doi.org/10.1007/s00265-017-2320-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00265-017-2320-6

Keywords

Navigation