Skip to main content
Log in

Clinical observation and finite element analysis of femoral stable interlocking intramedullary nail in intertrochanteric fractures

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract   

Purpose

This study was designed to compare clinical outcomes of the femoral stable interlocking intramedullary nail (FSIIN) with proximal femoral nail anti-rotation (PFNA) for the treatment of intertrochanteric fractures (OTA 31A1 + A2).

Methods

This study retrospectively analyzed a registered sample of 74 intertrochanteric fractures (OTA 31A1 + A2) surgically treated using FSIIN (n = 36) or PFNA (n = 38) from January 2015 to December 2021. The intra-operative variables (operation time, fluoroscopy time, intra-operative blood loss, length of incision) and fracture healing time were compared between the two groups in this study. Harris hip score (HHS) and visual analog scale (VAS) were used to evaluate the functional states. At the last follow-up, the incidence of related complications in patients was calculated. Eventually, the 3D finite element model was established to analyze the stress of FSIIN and PFNA.

Results

The distribution of all basic characteristics was similar between the two groups (p > 0.05). The operation time, fluoroscopy time, intra-operative blood loss, and length of incision were significantly decreased in the FSIIN group (p < 0.001). The FSIIN group had a shorter fracture healing time than the PFNA group (p < 0.001). There is no significant difference between the two groups in the Harris and VAS (p > 0.05). The incidences of post-operative anaemia, electrolyte imbalance, varus malalignment, and thigh pain were significantly lower in FSIIN than in PFNA groups (all p < 0.05). The finite element results show that the stress shielding effect of FSIIN is smaller.

Conclusions

Our study revealed that FSIIN seemed to be superior to PFNA in the treatment of intertrochanteric fractures (OTA 31A1 + A2) due to less surgical damage and shorter fracture healing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data and materials during the current study are available from the corresponding author on reasonable request.

Code availability

Mimics 21.0 Software (Materialise Corporation, Leuven, Belgium); Geomagic-Studio 11 software (Raindrop Corporation, NC, USA); Abaqus 6.14 Software (Dassault Corporation, Paris, France); SPSS 26.0 Software (IBM Corporation, Armonk, NY, USA).

References 

  1. Zhang Z, Qiu Y, Zhang Y, Zhu Y, Sun F, Liu J, Zhang T, Wen L (2022) Corrigendum: Global trends in intertrochanteric hip fracture research from 2001 to 2020: a bibliometric and visualized study. Front Surg 9:865369. https://doi.org/10.3389/fsurg.2022.865369

    Article  PubMed  PubMed Central  Google Scholar 

  2. van Embden D, Rhemrev SJ, Meylaerts SA, Roukema GR (2010) The comparison of two classifications for trochanteric femur fractures: the AO/ASIF classification and the Jensen classification. Injury 41(4):377–381. https://doi.org/10.1016/j.injury.2009.10.007

    Article  PubMed  Google Scholar 

  3. Zhong G, Teng L, Li HB, Huang FG, Xiang Z, Cen SQ (2021) Surgical treatment of internal fixation failure of femoral peritrochanteric fracture. Orthop Surg 13(6):1739–1747. https://doi.org/10.1111/os.13110

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhao K, Wang Z, Tian S, Hou Z, Chen W, Zhang Y (2022) Incidence of and risk factors for pre-operative deep venous thrombosis in geriatric intertrochanteric fracture patients. Int Orthop 46(2):351–359. https://doi.org/10.1007/s00264-021-05215-x

    Article  PubMed  Google Scholar 

  5. Fan J, Lv Y, Xu X, Zhou F, Zhang Z, Tian Y, Ji H, Guo Y, Yang Z, Hou G (2021) The efficacy of multidisciplinary team co-management program for elderly patients with intertrochanteric fractures: a retrospective study. Front Surg 8:816763. https://doi.org/10.3389/fsurg.2021.816763

    Article  PubMed  Google Scholar 

  6. Chang SM, Hou ZY, Hu SJ, Du SC (2020) Intertrochanteric femur fracture treatment in Asia: what we know and what the world can learn. Orthop Clin North Am 51(2):189–205. https://doi.org/10.1016/j.ocl.2019.11.011

    Article  PubMed  Google Scholar 

  7. Wang R, Zhang H, Wei Q, Ding C, Cao L, Yi M, Tong D, Li D, Fan Z, Wu D, Ji F, Tang H (2021) Intramedullary nails in combination with reconstruction plate in the treatment of unstable intertrochanteric femoral fractures with lateral wall damage. Int Orthop 45(11):2955–2962. https://doi.org/10.1007/s00264-021-05004-6

    Article  Google Scholar 

  8. Cheng YX, Sheng X (2020) Optimal surgical methods to treat intertrochanteric fracture: a Bayesian network meta-analysis based on 36 randomized controlled trials. J Orthop Surg Res 15(1):402. https://doi.org/10.1186/s13018-020-01943-9

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gong H, Wang L, Zheng D, Fan Y (2012) The potential application of functionally graded material for proximal femoral nail antirotation device. Med Hypotheses 79(3):415–417. https://doi.org/10.1016/j.mehy.2012.06.013

    Article  PubMed  Google Scholar 

  10. Li X, Zhang L, Hou Z, Meng Z, Chen W, Wang P, Zhang Y (2015) Distal locked and unlocked nailing for perthrochanteric fractures–a prospective comparative randomized study. Int Orthop 39(8):1645–1652. https://doi.org/10.1007/s00264-015-2771-1

    Article  PubMed  Google Scholar 

  11. Skála-Rosenbaum J, Džupa V, Bartoška R, Douša P, Waldauf P, Krbec M (2016) Distal locking in short hip nails: cause or prevention of peri-implant fractures? Injury 47(4):887–892. https://doi.org/10.1016/j.injury.2016.02.009

    Article  PubMed  Google Scholar 

  12. Zheng L, Wong DW, Chen X, Chen Y, Li P (2022) Risk of proximal femoral nail antirotation (PFNA) implant failure upon different lateral femoral wall thickness in intertrochanteric fracture: a finite element analysis. Comput Methods Biomech Biomed Engin 25(5):512–520. https://doi.org/10.1080/10255842.2021.1964488

    Article  PubMed  Google Scholar 

  13. Yen S, Lu C, Ho C, Huang H, Tu H, Chang J, Chen C, Lin S (2021) Impact of wedge effect on outcomes of intertrochanteric fractures treated with intramedullary proximal femoral nail. J Clin Med 10(21):5112. https://doi.org/10.3390/jcm10215112

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chamay A, Tschantz P (1972) Mechanical influences in bone remodeling. Experimental research on Wolff’s law. J Biomech 5(2):173–180. https://doi.org/10.1016/0021-9290(72)90053-x

    Article  CAS  PubMed  Google Scholar 

  15. Hegde A, Khanna V, Mane P, Shetty C, Joseph N (2023) A comparative analysis of distal locked and unlocked long proximal femoral nail antirotation (PFNA-II) in the fixation of stable intertrochanteric fractures. Chin J Traumatol 26(2):111–115. https://doi.org/10.1016/j.cjtee.2022.12.007

    Article  PubMed  Google Scholar 

  16. Yang X, Wu Q, Wang X (2017) Investigation of perioperative hidden blood loss of unstable intertrochanteric fracture in the elderly treated with different intramedullary fixations. Injury 48(8):1848–1852. https://doi.org/10.1016/j.injury.2017.06.017

    Article  PubMed  Google Scholar 

  17. Grimaldi M, Courvoisier A, Tonetti J, Vouaillat H, Merloz P (2009) Superficial femoral artery injury resulting from intertrochanteric hip fracture fixation by a locked intramedullary nail. Orthop Traumatol Surg Res 95(5):380–382. https://doi.org/10.1016/j.otsr.2009.04.014

    Article  CAS  PubMed  Google Scholar 

  18. Han CD, Lee YH, Yang KH, Yang IH, Lee WS, Park YJ, Suh JS, Park KK (2013) Relationship between distal screws and femoral arteries in closed hip nailing on computed tomography angiography. Arch Orthop Trauma Surg 133(3):361–366. https://doi.org/10.1007/s00402-012-1674-5

    Article  PubMed  Google Scholar 

  19. Cai L, Wang T, Di L, Hu W, Wang J (2016) Comparison of intramedullary and extramedullary fixation of stable intertrochanteric fractures in the elderly: a prospective randomised controlled trial exploring hidden perioperative blood loss. BMC Musculoskelet Disord 17(1):475. https://doi.org/10.1186/s12891-016-1333-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Engler ID, Sinz NJ, McIntyre JA, Finch DJ, Ryan SP (2023) Impingement and perforation of the anterior femoral cortex in cephalomedullary nailing: systematic review and surgical techniques. Orthop Traumatol Surg Res 109(2):103505. https://doi.org/10.1016/j.otsr.2022.103505

    Article  PubMed  Google Scholar 

  21. Bridle SH, Patel AD, Bircher M, Calvert PT (1991) Fixation of intertrochanteric fractures of the femur. A randomised prospective comparison of the gamma nail and the dynamic hip screw. J Bone Joint Surg Br 73(2):330–334. https://doi.org/10.1302/0301-620X.73B2.2005167

    Article  CAS  PubMed  Google Scholar 

  22. Radford PJ, Needoff M, Webb JK (1993) A prospective randomised comparison of the dynamic hip screw and the gamma locking nail. J Bone Joint Surg Br 75(5):789–793. https://doi.org/10.1302/0301-620X.75B5.8376441

    Article  CAS  Google Scholar 

  23. Loh J, Huang D, Lei J, Yeo W, Wong MK (2021) Early clinical outcomes of short versus long proximal femoral nail anti-rotation (PFNA) in the treatment of intertrochanteric fractures. Malays Orthop J 15(2):115–121. https://doi.org/10.5704/MOJ.2107.017

    Article  PubMed Central  Google Scholar 

  24. Kuzyk PR, Zdero R, Shah S, Olsen M, Waddell JP, Schemitsch EH (2012) Femoral head lag screw position for cephalomedullary nails: a biomechanical analysis. J Orthop Trauma 26(7):414–421. https://doi.org/10.1097/BOT.0b013e318229acca

    Article  Google Scholar 

  25. Liang C, Peng R, Jiang N, Xie G, Wang L, Yu B (2018) Intertrochanteric fracture: association between the coronal position of the lag screw and stress distribution. Asian J Surg 41(3):241–249. https://doi.org/10.1016/j.asjsur.2017.02.003

    Article  PubMed  Google Scholar 

  26. Chouhan D, Meena S, Kamboj K, Meena MK, Narang A, Sinha S (2020) Distal locked versus unlocked intramedullary nailing in intertrochanteric fracture; a systematic review and meta-analysis of randomized and non-randomized trials. Bull Emerg Trauma 8(2):56–61. https://doi.org/10.30476/BEAT.2020.46444

    Article  PubMed  Google Scholar 

  27. Kane P, Vopat B, Paller D, Koruprolu S, Daniels AH, Born C (2014) A biomechanical comparison of locked and unlocked long cephalomedullary nails in a stable intertrochanteric fracture model. J Orthop Trauma 28(12):715–720. https://doi.org/10.1097/BOT.0000000000000165

    Article  PubMed Central  Google Scholar 

  28. Epari DR, Kassi JP, Schell H, Duda GN (2007) Timely fracture-healing requires optimization of axial fixation stability. J Bone Joint Surg Am 89(7):1575–1585. https://doi.org/10.2106/JBJS.F.00247

    Article  PubMed  Google Scholar 

  29. Lenz M, Gueorguiev B, Richards RG, Mückley T, Hofmann GO, Höntzsch D, Windolf M (2013) Fatigue performance of angle-stable tibial nail interlocking screws. Int Orthop 37(1):113–118. https://doi.org/10.1007/s00264-012-1633-3

    Article  PubMed  Google Scholar 

  30. Kanakaris NK, Tosounidis TH, Giannoudis PV (2015) Nailing intertrochanteric hip fractures: short versus long; locked versus nonlocked. J Orthop Trauma 29(Suppl 4):S10–S16. https://doi.org/10.1097/BOT.0000000000000286

    Article  PubMed  Google Scholar 

  31. Kang MN, Yoon HH, Seo YK, Park JK (2012) Effect of mechanical stimulation on the differentiation of cord stem cells. Connect Tissue Res 53(2):149–159. https://doi.org/10.3109/03008207.2011.619284

    Article  CAS  PubMed  Google Scholar 

  32. Lindvall E, Ghaffar S, Martirosian A, Husak L (2016) Short versus long intramedullary nails in the treatment of pertrochanteric hip fractures: incidence of ipsilateral fractures and costs associated with each implant. J Orthop Trauma 30(3):119–124. https://doi.org/10.1097/BOT.0000000000000420

    Article  PubMed  Google Scholar 

  33. Socci AR, Casemyr NE, Leslie MP, Baumgaertner MR (2017) Implant options for the treatment of intertrochanteric fractures of the hip: rationale, evidence, and recommendations. The Bone  Joint J 99-B(1):128–133. https://doi.org/10.1302/0301-620X.99B1.BJJ-2016-0134.R1

    Article  CAS  PubMed  Google Scholar 

  34. Buruian A, Silva GF, Roseiro T, Vale C, Carvalho A, Seiça E, Mendes A, Pereira C (2020) Distal interlocking for short trochanteric nails: static, dynamic or no locking? Review of the literature and decision algorithm. EFORT Open Rev 5(7):421–429. https://doi.org/10.1302/2058-5241.5.190045

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Tianjin Natural Science Foundation (Grant numbers [No. 21JCYBJC00280]).

Author information

Authors and Affiliations

Authors

Contributions

Yongqing Wang was a major contributor to the study design and critically reviewed for important intellectual content and provided the clinical data included in the manuscript. Weiyong Wu was involved in collecting data, writing, and revising the draft of the manuscript. Zhihui Zhao participated in the treatment decisions. Meiyue Liu and Bing Peng assisted with data acquisition and analysis. Bin Yao and Pishun Shi were responsible for constructing and analyzing 3D finite elements. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yongqing Wang.

Ethics declarations

Ethics approval and consent to participate

The study was approved by the Ethics Committee of the Tianjin No.4 Central Hospital (SZXLL-2015–024). In this retrospective study, all participants gave their written informed consent to participate in the study.

Consent for publication

All participants gave their written informed consent to publish the obtained data of the current study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Zhao, Z., Wang, Y. et al. Clinical observation and finite element analysis of femoral stable interlocking intramedullary nail in intertrochanteric fractures. International Orthopaedics (SICOT) 47, 2319–2326 (2023). https://doi.org/10.1007/s00264-023-05865-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-023-05865-z

Keywords

Navigation