Skip to main content

Advertisement

Log in

Finite element analysis of biomechanical effects of residual varus/valgus malunion after femoral fracture on knee joint

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Objective

Post-operative femoral shaft fractures are often accompanied by a residual varus/valgus deformity, which can result in osteoarthritis in severe cases. The purpose of this study was to investigate the biomechanical effects of residual varus/valgus deformities after middle and lower femoral fracture on the stress distribution and contact area of knee joint.

Methods

Thin-slice CT scanning of lower extremities and MRI imaging of knee joints were obtained from a healthy adult male to establish normal lower limb model (neutral position). Then, the models of 3°, 5°, and 10° of varus/valgus were established respectively by modifying middle and lower femur of normal model. To validate the modifying, a patient-specific model, whose BMI was same to former and had 10° of varus deformity of tibia, was built and simulated under the same boundary conditions.

Result

The contact area and maximum stress of modified models were similar to those of patient-specific model. The contact area and maximum stress of medial tibial cartilage in normal neutral position were 244.36 mm2 and 0.64 MPa, while those of lateral were 196.25 mm2 and 0.76 MPa. From 10° of valgus neutral position to 10° of varus, the contact area and maximum stress of medial tibial cartilage increased, and the lateral gradually decreased. The contact area and maximum stress of medial meniscus in normal neutral position were 110.91 mm2 and 3.24 MPa, while those of lateral were 135.83 mm2 and 3.45 MPa. The maximum stress of medial tibia subchondral bone in normal neutral position was 1.47 MPa, while that of lateral was 0.65 MPa. The variation trend of medial/lateral meniscus and subchondral bone was consistent with that of tibial plateau cartilage in the contact area and maximum stress.

Conclusion

This study suggested that varus/valgus deformity of femur had an obvious effect on the contact area and stress distribution of knee joint, providing biomechanical evidence and deepening understanding when performing orthopedic trauma surgery or surgical correction of the already existing varus/valgus deformity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen W, Lv H, Liu S, Liu B, Zhu Y, Chen X, Yang G, Liu L, Zhang T, Wang H, Yin B, Guo J, Zhang X, Li Y, Smith D, Hu P, Sun J, Zhang Y (2017) National incidence of traumatic fractures in China: a retrospective survey of 512 187 individuals. Lancet Glob Health 5:e807–e817. https://doi.org/10.1016/s2214-109x(17)30222-x

    Article  PubMed  Google Scholar 

  2. Larsen P, Ceccotti AA, Elsoe R (2020) High mortality following distal femur fractures: a cohort study including three hundred and two distal femur fractures. Int Orthop 44:173–177. https://doi.org/10.1007/s00264-019-04343-9

    Article  PubMed  Google Scholar 

  3. Gösling T, Krettek C (2019) Femoral shaft fractures. Unfallchirurg 122:59–75. https://doi.org/10.1007/s00113-018-0591-7

    Article  PubMed  Google Scholar 

  4. Patel KV, Brennan KL, Davis ML, Jupiter DC, Brennan ML (2014) High-energy femur fractures increase morbidity but not mortality in elderly patients. Clin Orthop Relat Res 472:1030–1035. https://doi.org/10.1007/s11999-013-3349-0

    Article  PubMed  Google Scholar 

  5. Cary DV (2005) Management of traumatic femoral shaft fractures. Jaapa 18:50–51. https://doi.org/10.1097/01720610-200502000-00008

    Article  PubMed  Google Scholar 

  6. Ricci WM, Gallagher B, Haidukewych GJ (2009) Intramedullary nailing of femoral shaft fractures: current concepts. J Am Acad Orthop Surg 17:296–305. https://doi.org/10.5435/00124635-200905000-00004

    Article  PubMed  Google Scholar 

  7. Jain D, Arora R, Garg R, Mahindra P, Selhi HS (2020) Functional outcome of open distal femoral fractures managed with lateral locking plates. Int Orthop 44:725–733. https://doi.org/10.1007/s00264-019-04347-5

    Article  PubMed  Google Scholar 

  8. Hernigou P (2017) History of external fixation for treatment of fractures. Int Orthop 41:845–853. https://doi.org/10.1007/s00264-016-3324-y

    Article  PubMed  Google Scholar 

  9. Chen W, Zhang T, Wang J, Liu B, Hou Z, Zhang Y (2016) Minimally invasive treatment of displaced femoral shaft fractures with a rapid reductor and intramedullary nail fixation. Int Orthop 40:167–172. https://doi.org/10.1007/s00264-015-2829-0

    Article  CAS  PubMed  Google Scholar 

  10. Ostrum RF, DiCicco J, Lakatos R, Poka A (1998) Retrograde intramedullary nailing of femoral diaphyseal fractures. J Orthop Trauma 12:464–468. https://doi.org/10.1097/00005131-199809000-00006

    Article  CAS  PubMed  Google Scholar 

  11. Carsen S, Park SS, Simon DA, Feibel RJ (2015) Treatment with the SIGN Nail in closed diaphyseal femur fractures results in acceptable radiographic alignment. Clin Orthop Relat Res 473:2394–2401. https://doi.org/10.1007/s11999-015-4290-1

    Article  PubMed  PubMed Central  Google Scholar 

  12. Woelber E, Martin A, Van Citters D, Luplow C, Githens M, Kohn C, Kim YJ, Oy H, Gollogly J (2019) Complications in patients with intramedullary nails: a case series from a single Cambodian surgical clinic. Int Orthop 43:433–440. https://doi.org/10.1007/s00264-018-3966-z

    Article  PubMed  Google Scholar 

  13. Ricci WM, Bellabarba C, Lewis R, Evanoff B, Herscovici D, Dipasquale T, Sanders R (2001) Angular malalignment after intramedullary nailing of femoral shaft fractures. J Orthop Trauma 15:90–95. https://doi.org/10.1097/00005131-200102000-00003

    Article  CAS  PubMed  Google Scholar 

  14. Kettelkamp DB, Hillberry BM, Murrish DE, Heck DA (1988) Degenerative arthritis of the knee secondary to fracture malunion. Clin Orthop Relat Res 234:159–169

    Google Scholar 

  15. Brouwer GM, van Tol AW, Bergink AP, Belo JN, Bernsen RM, Reijman M, Pols HA, Bierma-Zeinstra SM (2007) Association between valgus and varus alignment and the development and progression of radiographic osteoarthritis of the knee. Arthritis Rheum 56:1204–1211. https://doi.org/10.1002/art.22515

    Article  CAS  PubMed  Google Scholar 

  16. Papadopoulos EC, Parvizi J, Lai CH, Lewallen DG (2002) Total knee arthroplasty following prior distal femoral fracture. Knee 9:267–274. https://doi.org/10.1016/s0968-0160(02)00046-7

    Article  PubMed  Google Scholar 

  17. McKellop HA, Sigholm G, Redfern FC, Doyle B, Sarmiento A, Luck JV Sr (1991) The effect of simulated fracture-angulations of the tibia on cartilage pressures in the knee joint. J Bone Joint Surg Am 73:1382–1391

    Article  CAS  Google Scholar 

  18. Li M, Chang H, Wei N, Chang W, Yan Y, Jin Z, Chen W (2020) Biomechanical study on the stress distribution of the knee joint after tibial fracture malunion with residual varus-valgus deformity. Orthop Surg 12:983–989. https://doi.org/10.1111/os.12668

    Article  PubMed  PubMed Central  Google Scholar 

  19. Reina-Romo E, Rodríguez-Vallés J, Sanz-Herrera JA (2018) In silico dynamic characterization of the femur: physiological versus mechanical boundary conditions. Med Eng Phys. https://doi.org/10.1016/j.medengphy.2018.06.001

    Article  PubMed  Google Scholar 

  20. Moreland JR, Bassett LW, Hanker GJ (1987) Radiographic analysis of the axial alignment of the lower extremity. J Bone Joint Surg Am 69:745–749

    Article  CAS  Google Scholar 

  21. Whiteside LA, Arima J (1995) The anteroposterior axis for femoral rotational alignment in valgus total knee arthroplasty. Clin Orthop Relat Res 321:168–172

    Google Scholar 

  22. Li G, Lopez O, Rubash H (2001) Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis. J Biomech Eng 123:341–346. https://doi.org/10.1115/1.1385841

    Article  CAS  PubMed  Google Scholar 

  23. LeRoux MA, Setton LA (2002) Experimental and biphasic FEM determinations of the material properties and hydraulic permeability of the meniscus in tension. J Biomech Eng 124:315–321. https://doi.org/10.1115/1.1468868

    Article  PubMed  Google Scholar 

  24. McNulty AL, Guilak F (2015) Mechanobiology of the meniscus. J Biomech 48:1469–1478. https://doi.org/10.1016/j.jbiomech.2015.02.008

    Article  PubMed  PubMed Central  Google Scholar 

  25. Donahue TL, Hull ML, Rashid MM, Jacobs CR (2002) A finite element model of the human knee joint for the study of tibio-femoral contact. J Biomech Eng 124:273–280. https://doi.org/10.1115/1.1470171

    Article  PubMed  Google Scholar 

  26. Hölzer A, Schröder C, Woiczinski M, Sadoghi P, Scharpf A, Heimkes B, Jansson V (2013) Subject-specific finite element simulation of the human femur considering inhomogeneous material properties: a straightforward method and convergence study. Comput Methods Programs Biomed 110:82–88. https://doi.org/10.1016/j.cmpb.2012.09.010

    Article  PubMed  Google Scholar 

  27. Jiang D, Zhan S, Wang L, Shi LL, Ling M, Hu H, Jia W (2020) Biomechanical comparison of five cannulated screw fixation strategies for young vertical femoral neck fractures. J Orthop Res. https://doi.org/10.1002/jor.24881

  28. Morimoto Y, Ferretti M, Ekdahl M, Smolinski P, Fu FH (2009) Tibiofemoral joint contact area and pressure after single- and double-bundle anterior cruciate ligament reconstruction. Arthroscopy 25:62–69. https://doi.org/10.1016/j.arthro.2008.08.014

    Article  PubMed  Google Scholar 

  29. Sharma L, Song J, Felson DT, Cahue S, Shamiyeh E, Dunlop DD (2001) The role of knee alignment in disease progression and functional decline in knee osteoarthritis. JAMA 286:188–195. https://doi.org/10.1001/jama.286.2.188

    Article  CAS  PubMed  Google Scholar 

  30. Felson DT, Niu J, Gross KD, Englund M, Sharma L, Cooke TD, Guermazi A, Roemer FW, Segal N, Goggins JM, Lewis CE, Eaton C, Nevitt MC (2013) Valgus malalignment is a risk factor for lateral knee osteoarthritis incidence and progression: findings from the Multicenter Osteoarthritis Study and the Osteoarthritis Initiative. Arthritis Rheum 65:355–362. https://doi.org/10.1002/art.37726

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fang T, Zhou X, Jin M, Nie J, Li X (2021) Molecular mechanisms of mechanical load-induced osteoarthritis. Int orthop. https://doi.org/10.1007/s00264-021-04938-1

  32. Quirno M, Campbell KA, Singh B, Hasan S, Jazrawi L, Kummer F, Strauss EJ (2017) Distal femoral varus osteotomy for unloading valgus knee malalignment: a biomechanical analysis. Knee Surg Sports Traumatol Arthrosc 25:863–868. https://doi.org/10.1007/s00167-015-3602-z

    Article  PubMed  Google Scholar 

  33. Veronesi F, Berni M, Marchiori G, Cassiolas G, Muttini A, Barboni B, Martini L, Fini M, Lopomo NF, Marcacci M, Kon E (2021) Evaluation of cartilage biomechanics and knee joint microenvironment after different cell-based treatments in a sheep model of early osteoarthritis. Int Orthop 45:427–435. https://doi.org/10.1007/s00264-020-04701-y

    Article  PubMed  Google Scholar 

  34. Rajgopal A, Noble PC, Vasdev A, Ismaily SK, Sawant A, Dahiya V (2015) Wear patterns in knee articular surfaces in varus deformity. J Arthroplasty 30:2012–2016. https://doi.org/10.1016/j.arth.2015.05.002

    Article  PubMed  Google Scholar 

  35. Zamber RW, Teitz CC, McGuire DA, Frost JD, Hermanson BK (1989) Articular cartilage lesions of the knee. Arthroscopy 5:258–268. https://doi.org/10.1016/0749-8063(89)90139-4

    Article  CAS  PubMed  Google Scholar 

  36. Irvine GB, Glasgow MM (1992) The natural history of the meniscus in anterior cruciate insufficiency. Arthroscopic analysis. J Bone Joint Surg Br 74:403–405. https://doi.org/10.1302/0301-620x.74b3.1587888

    Article  CAS  PubMed  Google Scholar 

  37. Masouros SD, McDermott ID, Amis AA, Bull AM (2008) Biomechanics of the meniscus-meniscal ligament construct of the knee. KneeSurg Sports Traumatol Arthrosc 16:1121–1132. https://doi.org/10.1007/s00167-008-0616-9

    Article  CAS  Google Scholar 

  38. Veronesi F, Vandenbulcke F, Ashmore K, Di Matteo B, Nicoli Aldini N, Martini L, Fini M, Kon E (2020) Meniscectomy-induced osteoarthritis in the sheep model for the investigation of therapeutic strategies: a systematic review. Intorthop 44:779–793. https://doi.org/10.1007/s00264-020-04493-1

    Article  Google Scholar 

  39. Bobinac D, Spanjol J, Zoricic S, Maric I (2003) Changes in articular cartilage and subchondral bone histomorphometry in osteoarthritic knee joints in humans. Bone 32:284–290. https://doi.org/10.1016/s8756-3282(02)00982-1

    Article  PubMed  Google Scholar 

  40. Luceri F, Basilico M, Batailler C, Randelli PS, Peretti GM, Servien E, Lustig S (2020) Effects of sagittal tibial osteotomy on frontal alignment of the knee and patellar height. Int Orthop 44:2291–2298. https://doi.org/10.1007/s00264-020-04580-3

    Article  PubMed  Google Scholar 

  41. Na YG, Lee BK, Hwang DH, Choi ES, Sim JA (2018) Can osteoarthritic patients with mild varus deformity be indicated for high tibial osteotomy? Knee 25:856–865. https://doi.org/10.1016/j.knee.2018.05.001

    Article  PubMed  Google Scholar 

  42. Bode G, Schmal H, Pestka JM, Ogon P, Südkamp NP, Niemeyer P (2013) A non-randomized controlled clinical trial on autologous chondrocyte implantation (ACI) in cartilage defects of the medial femoral condyle with or without high tibial osteotomy in patients with varus deformity of less than 5°. Arch Orthop Trauma Surg 133:43–49. https://doi.org/10.1007/s00402-012-1637-x

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Support Program for the National Natural Science Foundation of China (Grant No. 82072447, 81401789) and the Hebei National Science Foundation-Outstanding Youth Foundation (Grant No. H2017206104). The funding source has no role in study design, conduction, data collection, or statistical analysis.

Author information

Authors and Affiliations

Authors

Contributions

W. C. and Y. Z. designed the study. W. C. and Y.Z. searched relevant studies. K. D., W. Y., S. Z., C. R., Y. B., Q. Z., and P.H. analyzed and interpreted the data. K. D., W. Y., and H. W. wrote the manuscript and contributed equally to this work. W. C., Y. Z., and S.Z. contributed most in the revision of this manuscript. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Yanbin Zhu or Wei Chen.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. This study conforms to the provisions of the Declaration of Helsinki and has been reviewed and approved by the Institutional Review Board of The Third Hospital of Hebei Medical University.

Informed consent

Informed consent to participate and publish was obtained from the volunteer individual in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, K., Yang, W., Wang, H. et al. Finite element analysis of biomechanical effects of residual varus/valgus malunion after femoral fracture on knee joint. International Orthopaedics (SICOT) 45, 1827–1835 (2021). https://doi.org/10.1007/s00264-021-05039-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-021-05039-9

Keywords

Navigation