Skip to main content

Advertisement

Log in

A modified procedure of single-level transforaminal lumbar interbody fusion reduces immediate post-operative symptoms: a prospective case-controlled study based on two hundred and four cases

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Study design

This is a prospective case-controlled study.

Purpose

The purpose of this study is to investigate the effect of a modified transforaminal lumbar interbody fusion (TLIF) on the immediate post-operative symptoms in patients with lumbar disc herniation (LDH) accompanied with stenosis.

Methods

A total of 204 LDH patients with single-level TLIF were enrolled. According to the sequence of the placement of rods and cage, patients were divided into group R (rod-prior-to-cage) and group C (cage-prior-to-rod). Neurological function was evaluated by the Japanese Orthopedic Association (JOA) score. Radiological assessment includes height of intervertebral space (HIS), foraminal height (FH), foraminal area (FA), and segmental lordosis (SL). Change of original symptoms (pain/numb) and new-onset symptoms (pain/numb) after surgery were also recorded.

Results

Patients in group R had less change of HIS at L3/4, L4/5, and L5/S1 levels compared with pre-operation (all p > 0.05), whereas group C had larger change (all p < 0.05). No statistical difference was found in FH between the two groups before and after surgery at L3/4, L4/5, and L5/S1, respectively (all p > 0.05). In terms of FA, patients in group R had better improvement after surgery than those in group C at L3/4 and L4/5 (both p < 0.05). Patients in both groups acquired good improvement of neurological function. However, there were fewer patients in group R who experienced post-operative leg pain or numb compared with those in group C (p < 0.05).

Conclusion

The modified open TLIF can significantly reduce the incidence of immediate post-operative symptoms for patients with single-level lumbar disc herniation via installation of rods prior to insertion of cage and the “neural standard” should serve as the goal of decompression for spine surgeons to restore disc/foraminal height and to minimize nerve distraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stonecipher T, Wright S (1989) Posterior lumbar interbody fusion with facet-screw fixation. Spine (Phila Pa 1976) 14:468–471. https://doi.org/10.1097/00007632-198904000-00026

    Article  CAS  Google Scholar 

  2. Voor MJ, Mehta S, Wang M, Zhang YM, Mahan J, Johnson JR (1998) Biomechanical evaluation of posterior and anterior lumbar interbody fusion techniques. J Spinal Disord 11:328–334

    Article  CAS  Google Scholar 

  3. Zhao X, Chen C, Zhou T, Mi J, Lin D, Kang Z, Huang J, Zhang K, Sun X, Zhao J (2018) Analysis of single cage position in transforaminal lumbar interbody fusion through digital images. Int Orthop 42:1091–1097. https://doi.org/10.1007/s00264-018-3814-1

    Article  PubMed  Google Scholar 

  4. Mura PP, Costaglioli M, Piredda M, Caboni S, Casula S (2011) TLIF for symptomatic disc degeneration: a retrospective study of 100 patients. Eur Spine J 20(Suppl 1):57–60. https://doi.org/10.1007/s00586-011-1761-2

    Article  PubMed Central  Google Scholar 

  5. Cheng X, Zhang K, Sun X et al (2017) Clinical and radiographic outcomes of bilateral decompression via a unilateral approach with transforaminal lumbar interbody fusion for lumbar degenerative spondylolisthesis with stenosis. Spine J 17:1127–1133. https://doi.org/10.1016/j.spinee.2017.04.011

    Article  PubMed  Google Scholar 

  6. Kim MC, Park JU, Kim WC et al (2014) Can unilateral-approach minimally invasive transforaminal lumbar interbody fusion attain indirect contralateral decompression? A preliminary report of 66 MRI analysis. Eur Spine J 23:1144–1149. https://doi.org/10.1007/s00586-014-3192-3

    Article  PubMed  Google Scholar 

  7. Jang KM, Park SW, Kim YB et al (2015) Acute contralateral radiculopathy after unilateral transforaminal lumbar interbody fusion. J Korean Neurosurg Soc 58:350–356. https://doi.org/10.3340/jkns.2015.58.4.350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hunt T, Shen FH, Shaffrey CI, Arlet V (2007) Contralateral radiculopathy after transforaminal lumbar interbody fusion. Eur Spine J 16(Suppl 3):311–314

    Article  Google Scholar 

  9. Yang Y, Liu ZY, Zhang LM et al (2018) Risk factor of contralateral radiculopathy following microendoscopy-assisted minimally invasive transforaminal lumbar interbody fusion. Eur Spine J 27:1925–1932. https://doi.org/10.1007/s00586-017-5417-8

    Article  PubMed  Google Scholar 

  10. Cho PG, Park SH, Kim KN, Ha Y, Yoon DH, Shin DA (2015) A morphometric analysis of contralateral neural foramen in TLIF. Eur Spine J 24:783–790. https://doi.org/10.1007/s00586-015-3783-7

    Article  PubMed  Google Scholar 

  11. Postigo S, Schmidt H, Rohlmann A et al (2014) Investigation of different cage designs and mechano-regulation algorithms in the lumbar interbody fusion process - a finite element analysis. J Biomech 47:1514–1519. https://doi.org/10.1016/j.jbiomech.2014.02.005

    Article  PubMed  Google Scholar 

  12. Matsui H, Kitagawa H, Kawaguchi Y, Tsuji H (1995) Physiologic changes of nerve root during posterior lumbar discectomy. Spine (Phila Pa 1976) 20:654–659. https://doi.org/10.1097/00007632-199503150-00004

    Article  CAS  Google Scholar 

  13. Shi JG, Xu XM, Sun JC, Wang Y, Kong QJ, Shi GD (2019) Theory of bowstring disease- diagnosis and treatment bowstring disease. Orthop Surg 11:3–9. https://doi.org/10.1111/os.12417

    Article  PubMed  PubMed Central  Google Scholar 

  14. El-Kader EBA (2016) Transforaminal lumbar interbody fusion for management of recurrent lumbar disc herniation. Asian Spine J 10:52–58. https://doi.org/10.4184/asj.2016.10.1.52

    Article  Google Scholar 

  15. Ge DH, Stekas ND, Varlotta CG et al (2019) Comparative analysis of two transforaminal lumbar interbody fusion techniques: open TLIF: versus: Wiltse MIS TLIF. Spine (Phila Pa 1976) 44:E555–E560. https://doi.org/10.1097/BRS.0000000000002903

    Article  Google Scholar 

  16. Sun KQ, Sun JC, Wang SM et al (2018) Placement of titanium mesh in hybrid decompression surgery to avoid graft subsidence in treatment of three-level cervical spondylotic myelopathy: cephalad or caudal? Med Sci Monit 24:9479–9487. https://doi.org/10.12659/MSM.912650

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tian H, Wu A, Guo M et al (2018) Adequate restoration of disc height and segmental lordosis by lumbar interbody fusion decreases adjacent segment degeneration. World Neurosurg 118:e856–e864. https://doi.org/10.1016/j.wneu.2018.07.075

    Article  PubMed  Google Scholar 

  18. Ren Z, Liu A, Yang K et al (2017) Evaluation of changes in lumbar neuroforaminal dimensions in symptomatic young adults using positional MRI. Eur Spine J 26:1999–2006. https://doi.org/10.1007/s00586-017-4953-6

    Article  PubMed  Google Scholar 

  19. Cummock MD, Vanni S, Levi AD, Yu Y, Wang MY (2011) An analysis of postoperative thigh symptoms after minimally invasive transpsoas lumbar interbody fusion. J Neurosurg Spine 15:11–18. https://doi.org/10.3171/2011.2.SPINE10374

    Article  PubMed  Google Scholar 

  20. Hu HT, Ren L, Sun XZ, Liu FY, Yu JH, Gu ZF (2018) Contralateral radiculopathy after transforaminal lumbar interbody fusion in the treatment of lumbar degenerative diseases. Medicine (Baltimore) 97:e0469. https://doi.org/10.1097/MD.0000000000010469

    Article  Google Scholar 

  21. Taher F, Hughes AP, Lebl DR et al (2013) Contralateral motor deficits after lateral lumbar interbody fusion. Spine (Phila Pa 1976) 38:1959–1963. https://doi.org/10.1097/BRS.0b013e3182a463a9

    Article  Google Scholar 

  22. Molinares DM, Davis TT, Fung DA et al (2016) Is the lateral jack-knife position responsible for cases of transient neurapraxia? J Neurosurg Spine 24:189–196. https://doi.org/10.3171/2015.3.SPINE14928

    Article  PubMed  Google Scholar 

  23. Mueller K, McGowan J, Kane S, Voyadzis JM (2019) Evaluation of retraction time as a predictor of postoperative motor dysfunction after minimally invasive transpsoas interbody fusion at L4-L5. J Clin Neurosci 61:124–129. https://doi.org/10.1016/j.jocn.2018.10.108

    Article  PubMed  Google Scholar 

  24. Pumberger M, Hughes AP, Huang RR, Sama AA, Cammisa FP, Girardi FP (2012) Neurologic deficit following lateral lumbar interbody fusion. Eur Spine J 21:1192–1199. https://doi.org/10.1007/s00586-011-2087-9

    Article  PubMed  Google Scholar 

  25. Knight RQ, Schwaegler P, Hanscom D, Roh J (2009) Direct lateral lumbar interbody fusion for degenerative conditions: early complication profile. J Spinal Disord Tech 22:34–37. https://doi.org/10.1097/BSD.0b013e3181679b8a

    Article  PubMed  Google Scholar 

  26. Regev GJ, Chen L, Dhawan M, Lee YP, Garfin SR, Kim CW (2009) Morphometric analysis of the ventral nerve roots and retroperitoneal vessels with respect to the minimally invasive lateral approach in normal and deformed spines. Spine (Phila Pa 1976) 34:1330–1335. https://doi.org/10.1097/BRS.0b013e3181a029e1

    Article  Google Scholar 

  27. Taylor H, McGregor AH, Medhi-Zadeh S et al (2002) The impact of self-retaining retractors on the paraspinal muscles during posterior spinal surgery. Spine (Phila Pa 1976) 27:2758–2762. https://doi.org/10.1097/00007632-200212150-00004

    Article  Google Scholar 

  28. Lykissas MG, Cho W, Aichmair A et al (2013) Is there any relation between the amount of curve correction and postoperative neurological deficit or pain in patients undergoing standalone lateral lumbar interbody fusion? Spine (Phila Pa 1976) 38:1656–1662. https://doi.org/10.1097/BRS.0b013e31829cf269

    Article  Google Scholar 

  29. Kaito T, Hosono N, Mukai Y, Makino T, Fuji T, Yonenobu K (2010) Induction of early degeneration of the adjacent segment after posterior lumbar interbody fusion by excessive distraction of lumbar disc space. J Neurosurg Spine 12:671–679. https://doi.org/10.3171/2009.12.SPINE08823

    Article  PubMed  Google Scholar 

  30. Liu J, Ebraheim NA, Haman SP et al (2006) Effect of the increase in the height of lumbar disc space on facet joint articulation area in sagittal plane. Spine (Phila Pa 1976) 31:E198–E202. https://doi.org/10.1097/01.brs.0000206387.67098.a0

    Article  Google Scholar 

  31. Kaito T, Hosono N, Fuji T, Makino T, Yonenobu K (2011) Disc space distraction is a potent risk factor for adjacent disc disease after PLIF. Arch Orthop Trauma Surg 131:1499–1507. https://doi.org/10.1007/s00402-011-1343-0

    Article  PubMed  Google Scholar 

Download references

Funding

The study is supported by the National Natural Science Foundation of China Grant/Award Numbers 81871828 (Jiangang Shi), 81802218 (Jingchuan Sun), and 81702141 (Ximing Xu).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongfei Guo or Jiangang Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, K., Sun, X., Huan, L. et al. A modified procedure of single-level transforaminal lumbar interbody fusion reduces immediate post-operative symptoms: a prospective case-controlled study based on two hundred and four cases. International Orthopaedics (SICOT) 44, 935–945 (2020). https://doi.org/10.1007/s00264-020-04508-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-020-04508-x

Keywords

Navigation