Skip to main content

Advertisement

Log in

Role of a collagen membrane in adhesion prevention strategy for complex spinal surgeries

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Following lumbar spine surgery, postoperative complications can appear, including epidural adhesions. The formation of fibrosis around the dura mater can, on the one hand, lead to compression of the nerve roots with recurrent radicular pain and, on the other hand, can increase the risks of specific complications at spinal re-intervention (haematomas and dural breaches). The aim of this prospective monocentric study was to assess the safety of a new collagen antiadhesion membrane in vertebral osteotomy surgery where scar tissue and adhesions are important.

Methods

Twenty-six patients consecutively operated for lumbar posterior subtraction osteotomy with implantation of a collagen-based anti-adhesion membrane were evaluated. Membrane tolerance was evaluated at the short and midterm during the regular follow-up.

Results

At six months’ follow-up, postoperative pain [visual analogue scale (VAS)] and disability (Oswestry Disability Index score) were significantly reduced 33.1 and 43.1 %, respectively. These results were confirmed at 12-months’ follow-up, with a decrease in pain of 39.9 % and in disability of 49.3 %. Amongst the observed postoperative complications was neither spinal fluid leak nor durotomy. Presence of the membrane was not related to complications. Two patients required further surgery for infection and nonunion at the osteotomised level. Adhesions to the dura mater were limited and thin, facilitating exposure.

Conclusions

This study shows good tolerance of the collagen based membrane for spinal osteotomy and its satisfactory use for preventing postoperative epidural adhesions. Good surgical practice associated with an anti-adhesion barrier may decrease fibrosis formation and improve postoperative functional results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Le Huec JC, Roussouly P (2011) Sagittal spino-pelvic balance is a crucial analysis for normal and degenerative spine. Eur Spine J 20(Suppl 5):556–557

    Article  PubMed Central  PubMed  Google Scholar 

  2. Enercan M, Ozturk C, Kahraman S, Sarıer M, Hamzaoglu A, Alanay A (2013) Osteotomies/spinal column resections in adult deformity. Eur Spine J 22(Suppl 2):S254–S264

    Article  PubMed  Google Scholar 

  3. Ross JS, Robertson JT, Frederickson RC, Petrie JL, Obuchowski N, Modic MT, deTribolet N et al (1996) Association between peridural scar and recurrent radicular pain after lumbar discectomy: magnetic resonance evaluation. ADCON-L European Study Group. Neurosurgery 38:855–861

    Article  CAS  PubMed  Google Scholar 

  4. Ido K, Urushidani H (2001) Fibrous adhesive entrapment of lumbosacral nerve roots as a cause of sciatica. Spinal Cord 39:267–273

    Article  Google Scholar 

  5. Cooper RG, Freemont AJ, Hoyland JA, Jenkins JP, West CG, Illingworth KJ, Jayson MI (1995) Herniated vertebral disc-associated periradicular fibrosis and vascular abnormalities occur without inflammatory cell infiltration. Spine 20:591–598

    Article  CAS  PubMed  Google Scholar 

  6. Gerometta A, Rodriguez Olaverri JC, Bittan F (2012) Infection and revision strategies in total disc arthroplasty. Int Orthop 36:471–474

    Article  PubMed Central  PubMed  Google Scholar 

  7. Jayson MI (1989) Vascular damage, fibrosis, and chronic inflammation in mechanical back problems Semin. Arthritis Rheum 18:73–76

    Article  CAS  Google Scholar 

  8. Rydevik B, Brown MD, Lundborg G (1984) Pathoanatomy and pathophysiology of nerve root compression. Spine 9:7–15

    Article  CAS  PubMed  Google Scholar 

  9. Rydevik B, Myers RR, Powell HC (1989) Pressure increases in the dorsal root ganglion after mechanical compression. Spine 14:574–576

    Article  CAS  PubMed  Google Scholar 

  10. Malter AD, McNeney B, Loeser J, Deyo RA (1998) 5-year reoperation rates after different types of lumbar spine surgery. Spine (Phila Pa 1976) 23:814–820

    Article  CAS  Google Scholar 

  11. Abitbol JJ, Lincoln TL, Bl L, Amiel D, Akeson WH, Garfin SR (1994) Preventing postlaminectomy adhesion: a new experimental model. Spine 19:1809–1814

    Article  CAS  PubMed  Google Scholar 

  12. Hinton JL, Warejcka DJ, Mei Y, McLendon RE, Laurencin C, Lucas PA, Robinson JS Jr (1995) Inhibition of epidural scar formation after lumbar laminectomy in the rat. Spine 20:564–570

    Article  PubMed  Google Scholar 

  13. Songer MN, Rauschning W, Carson EW, Pandit SM (1995) Analysis of peridural scar formation and its prevention after lumbar laminotomy and discectomy in dogs. Spine 20:571–580

    Article  CAS  PubMed  Google Scholar 

  14. Jacobs R, McClain O, Neff J (1980) Control of postlaminectomy scar formation: an experimental and clinical study. Spine 5:223–229

    Article  CAS  PubMed  Google Scholar 

  15. Zou X, Li H, Egund N, Lind M, Bünger C (2004) Inhibition of spinal fusion by use of a tissue ingrowth inhibitor. Eur Spine J 13:157–163

    Article  PubMed Central  PubMed  Google Scholar 

  16. Kitano T, Zerwekh JE, Edwards ML, Usui Y, Allen MD (1991) Viscous carboxymethylcellulose in the prevention of epidural scar formation. Spine 16:820–823

    Article  CAS  PubMed  Google Scholar 

  17. Langenskjöld A, Kiviluoto O (1976) Prevention of epidural scar formation after operations on the lumbar spine by means of free fat transplants. Clin Orthop Relat 115:92–95

    Google Scholar 

  18. Gill GG, Scheck M, Kelley ET, Rodrigo JJ (1985) Pedicle fat grafts for the prevention of scar in low-back surgery: a preliminary report on the first 92 cases. Spine 10:662–677

    Article  CAS  PubMed  Google Scholar 

  19. Yong-Hing K, Reilly J, de Korompay V, Kirkaldy-Willis WH (1980) Prevention of nerve root adhesions after laminectomy. Spine 5:59–64

    Article  CAS  PubMed  Google Scholar 

  20. MacKay MA, Fischgrund JS, Herkowitz HN, Kurz LT, Hecht B, Schwartz M (1995) The effect of interposition membrane on the outcome of lumbar laminectomy and discectomy. Spine 20:1793–1796

    Article  CAS  PubMed  Google Scholar 

  21. Jensen TT, Asmussen K, Berg-Hansen EM, Lauritsen B, Manniche C, Vinterberg H, Jensen L, Kramhøft J (1996) First-time operation for lumbar disc herniation with or without free fat transplantation. Prospective triple-blind randomized study with reference to clinical factors and enhanced computed tomographic scan 1 year after operation. Spine 21:1072–1076

    Article  CAS  PubMed  Google Scholar 

  22. Bernsmann K, Krämer J, Ziozios I, Wehmeier J, Wiese M (2001) Lumbar micro disc surgery with and without autologus fat graft : a prospective randomized trial evaluated with reference to clinical and social factors. Arch Orthop Trauma Surg 121:476–480

    Article  CAS  PubMed  Google Scholar 

  23. Manchikanti L, Saini B, Singh V (2001) Spinal endoscopy and lysis of epidural adhesions in the management of chronic low back pain. Pain Physician 4:240–265

    CAS  PubMed  Google Scholar 

  24. Gillard DM, Corenman DS, Dornan GJ (2014) Failed less invasive lumbar spine surgery as a predictor of subsequent fusion outcomes. Int Orthop 38:811–815

    Article  PubMed Central  PubMed  Google Scholar 

  25. Howe JF, Loeser JD, Calvin WH (1977) Mechanosensitivity of dorsal root ganglion and chronically injured axons. A physiological basis for the radicular pain of nerve root compression. Pain 3:25–41

    Article  CAS  PubMed  Google Scholar 

  26. Arrotegi I (2011) Reduction of clinical symptoms after lumbar discectomy using Collagen Dural Matrix clinical trial. World Spinal Column J 2(1):7–11

    Google Scholar 

  27. Gill GG, Sakovich L, Thompson E (1979) Pedicle fat grafts for the prevention of scar formation after laminectomy. An experimental study in dogs. Spine 4:176–186

    Article  CAS  PubMed  Google Scholar 

  28. Cheng J, Wang H, Zheng W, Li C, Wang J, Zhang Z, Huang B, Zhou Y (2013) Reoperation after lumbar disc surgery in two hundred and seven patients. Int Orthop 37:1511–1517

    Article  PubMed Central  PubMed  Google Scholar 

  29. Dangelmajer S, Zadnik P, Rodriguez S, Gokaslan ZL, Sciubba DM (2014) Minimally invasive spine surgery for adult degenerative lumbar scoliosis. Neurosurg Focus 36(5):E7

    Article  PubMed  Google Scholar 

  30. Smith JS, Shaffrey CI, Sansur CA et al (2011) Rates of infection after spine surgery based on 108,419 procedures: a report from the Scoliosis Research Society Morbidity and Mortality Committee. Spine 36:556–563

    Article  PubMed  Google Scholar 

  31. Mummaneni PV, Dhall SS, Ondra SL, Mummaneni VP, Berven S (2008) Pedicle subtraction osteotomy. Neurosurgery 63:171–176

    Article  PubMed  Google Scholar 

  32. Fairbank J, Couper J, Davies J, O’Brien JP (1980) The Oswestry low back pain questionnaire. Physiotherapy 66:271–273

    CAS  PubMed  Google Scholar 

  33. Copay AG, Glassman SD, Subach BR, Berven S, Schuler TC, Carreon LY (2008) Minimum clinically important difference in lumbar spine surgery patients: a choice of methods using the Oswestry Disability Index, Medical Outcomes Study questionnaire Short Form 36, and pain scales. Spine J 8:968–974

    Article  PubMed  Google Scholar 

  34. Shih HN, Fang JF, Chen JH, Yang CL, Chen YH, Sung TH, Shih LY (2004) Reduction in experimental peridural adhesion with the use of a crosslinked hyaluronate/ collagen membrane. J Biomed Mater Res B Appl Biomater 71B:421–428

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Charles LeHuec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LeHuec, JC., Sadikki, R., Cogniet, A. et al. Role of a collagen membrane in adhesion prevention strategy for complex spinal surgeries. International Orthopaedics (SICOT) 39, 1383–1390 (2015). https://doi.org/10.1007/s00264-015-2767-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-015-2767-x

Keywords

Navigation