Skip to main content

Advertisement

Log in

Interplay between plasmacytoid dendritic cells and tumor-specific T cells in peripheral blood influences long-term survival in non-small cell lung carcinoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Plasmacytoid dendritic cells (pDCs) represent a subset of antigen-presenting cells that play an ambivalent role in cancer immunity. Here, we investigated the clinical significance of circulating pDCs and their interaction with tumor-specific T cell responses in patients with non-small cell lung cancer (NSCLC, n = 126) . The relation between intratumoral pDC signature and immune checkpoint inhibitors efficacy was also evaluated. Patients with NSCLC had low level but activated phenotype pDC compared to healthy donors. In overall population, patients with high level of pDC (pDChigh) had improved overall survival (OS) compared to patients with pDClow, median OS 30.4 versus 20.7 months (P = 0.013). This clinical benefit was only observed in stage I to III patients, but not in metastatic disease. We showed that patients harboring pDChigh profile had high amount of Th1-diffentiation cytokine interleukin-12 (IL-12) in blood and had functional T cells directed against a broad range of tumor antigens. Furthermore, a high pDC signature in the tumor microenvironment was associated with improved clinical outcome in patients treated with anti-PD-(L)1 therapy. Overall, this study showed that circulating pDChigh is associated with long-term OS in NSCLC and highlighted the predictive value of intratumor pDC signature in the efficacy of immune checkpoint inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hiam-Galvez KJ, Allen BM, Spitzer MH (2021) Systemic immunity in cancer. Nat Rev Cancer 21:345–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Spitzer MH, Carmi Y, Reticker-Flynn NE, Kwek SS, Madhireddy D, Martins MM et al (2017) Systemic immunity is required for effective cancer immunotherapy. Cell 168:487-502.e15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Binnewies M, Mujal AM, Pollack JL, Combes AJ, Hardison EA, Barry KC et al (2019) Unleashing type-2 dendritic cells to drive protective antitumor CD4+ T cell immunity. Cell 177:556-571.e16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cancel J-C, Crozat K, Dalod M, Mattiuz R (2019) Are conventional type 1 dendritic cells critical for protective antitumor immunity and how? Front Immunol 10:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Villani A-C, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J et al (2017) Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356:eaah4573

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lande R, Gilliet M (2010) Plasmacytoid dendritic cells: key players in the initiation and regulation of immune responses. Ann N Y Acad Sci 1183:89–103

    Article  CAS  PubMed  Google Scholar 

  7. Swiecki M, Colonna M (2015) The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol 15:471–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tel J, Aarntzen EHJG, Baba T, Schreibelt G, Schulte BM, Benitez-Ribas D et al (2013) Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients. Cancer Res 73:1063–1075

    Article  CAS  PubMed  Google Scholar 

  9. Bol KF, Schreibelt G, Rabold K, Wculek SK, Schwarze JK, Dzionek A et al (2019) The clinical application of cancer immunotherapy based on naturally circulating dendritic cells. J Immunother Cancer 7:109

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mitchell D, Chintala S, Dey M (2018) Plasmacytoid dendritic cell in immunity and cancer. J Neuroimmunol 322:63–73

    Article  CAS  PubMed  Google Scholar 

  11. Conrad C, Gregorio J, Wang Y-H, Ito T, Meller S, Hanabuchi S et al (2012) Plasmacytoid dendritic cells promote immunosuppression in ovarian cancer via ICOS costimulation of Foxp3(+) T-regulatory cells. Cancer Res 72:5240–5249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D (2020) Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol 20:7–24

    Article  CAS  PubMed  Google Scholar 

  13. Nam J-H, Lee J-H, Choi S-Y, Jung N-C, Song J-Y, Seo H-G et al (2021) Functional ambivalence of dendritic cells: tolerogenicity and immunogenicity. Int J Mol Sci 22:4430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kini Bailur J, Gueckel B, Pawelec G (2016) Prognostic impact of high levels of circulating plasmacytoid dendritic cells in breast cancer. J Transl Med 14:151

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chevolet I, Speeckaert R, Schreuer M, Neyns B, Krysko O, Bachert C et al (2015) Clinical significance of plasmacytoid dendritic cells and myeloid-derived suppressor cells in melanoma. J Transl Med 13:9

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lee YS, Radford KJ (2019) Chapter three—the role of dendritic cells in cancer. In: Lhuillier C, Galluzzi L (eds) Immunobiology of dendritic cells part A. Academic Press, New York, pp 123–178

    Chapter  Google Scholar 

  17. Sosa Cuevas E, Ouaguia L, Mouret S, Charles J, De Fraipont F, Manches O et al (2020) BDCA1+ cDC2s, BDCA2+ pDCs and BDCA3+ cDC1s reveal distinct pathophysiologic features and impact on clinical outcomes in melanoma patients. Clin Transl Immunol 9:e1190

    Article  CAS  Google Scholar 

  18. Laheurte C, Dosset M, Vernerey D, Boullerot L, Gaugler B, Gravelin E et al (2019) Distinct prognostic value of circulating anti-telomerase CD4+ Th1 immunity and exhausted PD-1+/TIM-3+ T cells in lung cancer. Br J Cancer 121:405–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nardin C, Laheurte C, Puzenat E, Boullerot L, Ramseyer M, Marguier A et al (2021) Naturally occurring telomerase-specific CD4 T-cell immunity in melanoma. J Investig Dermatol 142:435–444

    Article  PubMed  Google Scholar 

  20. Kim S, François E, André T, Samalin E, Jary M, El Hajbi F et al (2018) Docetaxel, cisplatin, and fluorouracil chemotherapy for metastatic or unresectable locally recurrent anal squamous cell carcinoma (Epitopes-HPV02): a multicentre, single-arm, phase 2 study. Lancet Oncol 19:1094–1106

    Article  CAS  PubMed  Google Scholar 

  21. Safi S, Yamauchi Y, Rathinasamy A, Stamova S, Eichhorn M, Warth A et al (2017) Functional T cells targeting tumor-associated antigens are predictive for recurrence-free survival of patients with radically operated non-small cell lung cancer. Oncoimmunology 6:e1360458

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tatsumi T, Kierstead LS, Ranieri E, Gesualdo L, Schena FP, Finke JH et al (2002) Disease-associated bias in T helper type 1 (Th1)/Th2 CD4(+) T cell responses against MAGE-6 in HLA-DRB10401(+) patients with renal cell carcinoma or melanoma. J Exp Med 196:619–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peng S, Trimble C, Wu L, Pardoll D, Roden R, Hung C-F et al (2007) HLA-DQB1*02-restricted HPV-16 E7 peptide-specific CD4+ T-cell immune responses correlate with regression of HPV-16-associated high-grade squamous intraepithelial lesions. Clin Cancer Res Off J Am Assoc Cancer Res 13:2479–2487

    Article  CAS  Google Scholar 

  24. Dhodapkar KM, Gettinger SN, Das R, Zebroski H, Dhodapkar MV (2013) SOX2-specific adaptive immunity and response to immunotherapy in non-small cell lung cancer. Oncoimmunology 2:e25205

    Article  PubMed  PubMed Central  Google Scholar 

  25. Janssen N, Fortis SP, Speigl L, Haritos C, Sotiriadou NN, Sofopoulos M et al (2017) Peripheral T cell responses to tumour antigens are associated with molecular, immunogenetic and cellular features of breast cancer patients. Breast Cancer Res Treat 161:51–62

    Article  CAS  PubMed  Google Scholar 

  26. Godet Y, Fabre E, Dosset M, Lamuraglia M, Levionnois E, Ravel P et al (2012) Analysis of spontaneous tumor-specific CD4 T-cell immunity in lung cancer using promiscuous HLA-DR telomerase-derived epitopes: potential synergistic effect with chemotherapy response. Clin Cancer Res Off J Am Assoc Cancer Res 18:2943–2953

    Article  CAS  PubMed  Google Scholar 

  27. Laheurte C, Galaine J, Beziaud L, Dosset M, Kerzerho J, Jacquemard C et al (2016) Immunoprevalence and magnitude of HLA-DP4 versus HLA-DR-restricted spontaneous CD4(+) Th1 responses against telomerase in cancer patients. Oncoimmunology 5:e1137416

    Article  PubMed  PubMed Central  Google Scholar 

  28. Moodie Z, Price L, Gouttefangeas C, Mander A, Janetzki S, Löwer M et al (2010) Response definition criteria for ELISPOT assays revisited. Cancer Immunol Immunother CII 59:1489–1501

    Article  CAS  PubMed  Google Scholar 

  29. Lecuelle J, Favier L, Fraisse C, Lagrange A, Kaderbhai C, Boidot R et al (2022) MER4 endogenous retrovirus correlated with better efficacy of anti-PD1/PD-L1 therapy in non-small cell lung cancer. J Immunother Cancer 10:e004241

    Article  PubMed  PubMed Central  Google Scholar 

  30. Poropatich K, Dominguez D, Chan W-C, Andrade J, Zha Y, Wray B et al (2020) OX40+ plasmacytoid dendritic cells in the tumor microenvironment promote antitumor immunity. J Clin Investig 130:3528–3542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S et al (1999) The nature of the principal type 1 interferon-producing cells in human blood. Science 284:1835–1837

    Article  CAS  PubMed  Google Scholar 

  32. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    Article  PubMed  Google Scholar 

  33. Failli A, Legitimo A, Orsini G, Romanini A, Consolini R (2013) Numerical defect of circulating dendritic cell subsets and defective dendritic cell generation from monocytes of patients with advanced melanoma. Cancer Lett 337:184–192

    Article  CAS  PubMed  Google Scholar 

  34. Lauret Marie Joseph E, Laheurte C, Jary M, Boullerot L, Asgarov K, Gravelin E et al (2020) Immunoregulation and clinical implications of ANGPT2/TIE2+ M-MDSC signature in non-small cell lung cancer. Cancer Immunol Res 8:268–279

    Article  PubMed  Google Scholar 

  35. Charles J, Di Domizio J, Salameire D, Bendriss-Vermare N, Aspord C, Muhammad R et al (2010) Characterization of circulating dendritic cells in melanoma: role of CCR6 in plasmacytoid dendritic cell recruitment to the tumor. J Investig Dermatol 130:1646–1656

    Article  CAS  PubMed  Google Scholar 

  36. Lenahan C, Avigan D (2006) Dendritic cell defects in patients with cancer: mechanisms and significance. Breast Cancer Res BCR 8:101

    Article  PubMed  Google Scholar 

  37. Beckebaum S, Zhang X, Chen X, Yu Z, Frilling A, Dworacki G et al (2004) Increased levels of interleukin-10 in serum from patients with hepatocellular carcinoma correlate with profound numerical deficiencies and immature phenotype of circulating dendritic cell subsets. Clin Cancer Res Off J Am Assoc Cancer Res 10:7260–7269

    Article  CAS  PubMed  Google Scholar 

  38. Salio M, Cella M, Vermi W, Facchetti F, Palmowski MJ, Smith CL et al (2003) Plasmacytoid dendritic cells prime IFN-gamma-secreting melanoma-specific CD8 lymphocytes and are found in primary melanoma lesions. Eur J Immunol 33:1052–1062

    Article  CAS  PubMed  Google Scholar 

  39. Gardner A, Ruffell B (2016) Dendritic cells and cancer immunity. Trends Immunol 37:855–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kadowaki N, Antonenko S, Lau JY, Liu YJ (2000) Natural interferon alpha/beta-producing cells link innate and adaptive immunity. J Exp Med 192:219–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Noubade R, Majri-Morrison S, Tarbell KV (2019) Beyond cDC1: emerging roles of DC crosstalk in cancer immunity. Front Immunol 10:1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Faith A, Peek E, McDonald J, Urry Z, Richards DF, Tan C et al (2007) Plasmacytoid dendritic cells from human lung cancer draining lymph nodes induce Tc1 responses. Am J Respir Cell Mol Biol 36:360–367

    Article  CAS  PubMed  Google Scholar 

  43. Mathan TSMM, Figdor CG, Buschow SI (2013) Human plasmacytoid dendritic cells: from molecules to intercellular communication network. Front Immunol 4:372

    Article  PubMed  PubMed Central  Google Scholar 

  44. Marciscano AE, Anandasabapathy N (2021) The role of dendritic cells in cancer and anti-tumor immunity. Semin Immunol 52:101481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang S, Chopin M, Nutt SL (2021) Type 1 conventional dendritic cells: ontogeny, function, and emerging roles in cancer immunotherapy. Trends Immunol 42:1113–1127

    Article  CAS  PubMed  Google Scholar 

  46. Eisenbarth SC (2019) Dendritic cell subsets in T cell programming: location dictates function. Nat Rev Immunol 19:89–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mayoux M, Roller A, Pulko V, Sammicheli S, Chen S, Sum E et al (2020) Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy. Sci Transl Med 12:eaav7431

    Article  CAS  PubMed  Google Scholar 

  48. Oshi M, Newman S, Tokumaru Y, Yan L, Matsuyama R, Kalinski P et al (2020) Plasmacytoid dendritic cell (pDC) infiltration correlate with tumor infiltrating lymphocytes, cancer immunity, and better survival in triple negative breast cancer (TNBC) more strongly than conventional dendritic cell (cDC). Cancers 12:E3342

    Article  Google Scholar 

  49. Kießler M, Plesca I, Sommer U, Wehner R, Wilczkowski F, Müller L et al (2021) Tumor-infiltrating plasmacytoid dendritic cells are associated with survival in human colon cancer. J Immunother Cancer 9:e001813

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all patients who contributed to this study. We thank all of the medical doctors and nurses, from oncologic department of University Hospital of Besançon and European Georges Pompidou hospital in Paris, for their contributions. The authors also thank the Biomonitoring platform (EFS, CIC-1431) for their technical support.

Funding

This work was supported by grants from, La Ligue Contre le Cancer Grand Est 2020, the Conseil Regional de Franche-Comte, INCa-PLBio-2018.

Author information

Authors and Affiliations

Authors

Contributions

OA was involved in conceptualization and acquired the funding; OA, BG, PS and CL were responsible for methodology; CL, EG, AR, LB and MM acquired the data; CL, ES, AM, BL and OA carried out formal analysis and investigation; JL, CT, FG conducted RNA-Seq analysis. CL and OA wrote and prepared the original draft; FG, CL and OA wrote, reviewed and edited the manuscript; OA contributed to supervision.

Corresponding author

Correspondence to Olivier Adotevi.

Ethics declarations

Conflict of interest

The authors have no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 369 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laheurte, C., Seffar, E., Gravelin, E. et al. Interplay between plasmacytoid dendritic cells and tumor-specific T cells in peripheral blood influences long-term survival in non-small cell lung carcinoma. Cancer Immunol Immunother 72, 579–589 (2023). https://doi.org/10.1007/s00262-022-03271-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-022-03271-9

Keywords

Navigation