Skip to main content

Advertisement

Log in

Nutrient supplements from selected botanicals mediated immune modulation of the tumor microenvironment and antitumor mechanism

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Specific extracts of selected vegetables (SV) have been shown to benefit the survival of stage IIIb/IV non-small cell lung cancer patients in phase I/II studies and is currently in a phase III trial. However, the underlying mechanism of SV-mediated antitumor immune responses has not been elucidated. Our results indicate that SV modulated the NK and adoptive T cell immune responses in antitumor efficacy. Furthermore, antitumor effects of SV were also mediated by innate myeloid cell function, which requires both TLR and β-glucan signaling in a MyD88/TRIF and Dectin-1-dependent manner, respectively. Additionally, SV treatment reduced granulocytic myeloid-derived suppressor cell (MDSC) infiltration into the tumor and limited monocytic MDSC toward the M2-like functional phenotype. Importantly, SV treatment enhanced antigen-specific immune responses by augmenting the activation of antigen-specific TH1/TH17 cells in secondary lymphoid organs and proliferative response, as well as by reducing the Treg population in the tumor microenvironment, which was driven by SV-primed activated M-MDSC. Our results support the idea that SV can subvert immune-tolerance state in the tumor microenvironment and inhibit tumor growth. The present study suggests that features, such as easy accessibility, favorable clinical efficacy, no detectable side effects and satisfactory safety make SV a feasible, appealing and convincing adjuvant therapy for the treatment of cancer patients and prevent tumor recurrence and/or metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

The data analyzed and shown in presented study is available from the corresponding authors upon reasonable request.

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30. https://doi.org/10.3322/caac.21332

    Article  Google Scholar 

  2. Yang P (2009) Epidemiology of lung cancer prognosis: quantity and quality of life. Methods Mol Biol 471:469–486. https://doi.org/10.1007/978-1-59745-416-2_24

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rijavec E et al (2014) Ipilimumab in non-small cell lung cancer and small-cell lung cancer: new knowledge on a new therapeutic strategy. Expert Opin Biol Ther 14:1007–1017. https://doi.org/10.1517/14712598.2014.907786

    Article  CAS  PubMed  Google Scholar 

  4. Keating GM (2015) Nivolumab: a review in advanced squamous non-small cell lung cancer. Drugs 75:1925–1934. https://doi.org/10.1007/s40265-015-0492-9

    Article  CAS  PubMed  Google Scholar 

  5. Cappelli LC et al (2016) Inflammatory arthritis and sicca syndrome induced by nivolumab and ipilimumab. Ann Rheum Dis. https://doi.org/10.1136/annrheumdis-2016-209595

    Article  PubMed  Google Scholar 

  6. Gonzalez-Rodriguez E, Rodriguez-Abreu D, Spanish Group for Cancer I.-B (2016) Immune checkpoint inhibitors: review and management of endocrine adverse events. Oncologist 21:804–816. https://doi.org/10.1634/theoncologist.2015-0509(2016)

    Article  PubMed  PubMed Central  Google Scholar 

  7. Vucenik I, Sakamoto K, Bansal M, Shamsuddin AM (1993) Inhibition of rat mammary carcinogenesis by inositol hexaphosphate (phytic acid). A pilot study. Cancer Lett 75:95–102

    Article  CAS  Google Scholar 

  8. Wang HZ, Zhang Y, Xie LP, Yu XY, Zhang RQ (2002) Effects of genistein and daidzein on the cell growth, cell cycle, and differentiation of human and murine melanoma cells(1). J Nutr Biochem 13:421–426

    Article  Google Scholar 

  9. Lu Z et al (2016) S-equol, a secondary metabolite of natural anticancer isoflavone daidzein, inhibits prostate cancer growth in vitro and in vivo, though activating the Akt/FOXO3a pathway. Curr Cancer Drug Targets 16:455–465

    Article  CAS  Google Scholar 

  10. Lim W, Jeong M, Bazer FW, Song G (2016) Coumestrol inhibits proliferation and migration of prostate cancer cells by regulating AKT, ERK1/2, and JNK MAPK cell signaling cascades. J Cell Physiol. https://doi.org/10.1002/jcp.25494

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sun AS et al (1999) Phase I/II study of stage III and IV non-small cell lung cancer patients taking a specific dietary supplement. Nutr Cancer 34:62–69. https://doi.org/10.1207/S15327914NC340109

    Article  CAS  PubMed  Google Scholar 

  12. Sun AS et al (2001) Pilot study of a specific dietary supplement in tumor-bearing mice and in stage IIIB and IV non-small cell lung cancer patients. Nutr Cancer 39:85–95. https://doi.org/10.1207/S15327914nc391_12

    Article  CAS  PubMed  Google Scholar 

  13. Ames BN, Gold LS, Willett WC (1995) The causes and prevention of cancer. Proc Natl Acad Sci USA 92:5258–5265

    Article  CAS  Google Scholar 

  14. Bailar JC 3rd, Gornik HL (1997) Cancer undefeated. N Engl J Med 336:1569–1574. https://doi.org/10.1056/NEJM199705293362206

    Article  PubMed  Google Scholar 

  15. Bronte V et al (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150. https://doi.org/10.1038/ncomms12150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang WC, Ma G, Chen SH, Pan PY (2013) Polarization and reprogramming of myeloid-derived suppressor cells. J Mol Cell Biol 5:207–209. https://doi.org/10.1093/jmcb/mjt009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kao J et al (2011) Targeting immune suppressing myeloid-derived suppressor cells in oncology. Crit Rev Oncol Hematol 77:12–19. https://doi.org/10.1016/j.critrevonc.2010.02.004

    Article  PubMed  Google Scholar 

  18. Chen HM et al (2015) Myeloid-derived suppressor cells as an immune parameter in patients with concurrent sunitinib and stereotactic body radiotherapy. Clin Cancer Res 21:4073–4085. https://doi.org/10.1158/1078-0432.CCR-14-2742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pan PY et al (2008) Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood 111:219–228. https://doi.org/10.1182/blood-2007-04-086835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ma G et al (2011) Paired immunoglobin-like receptor-B regulates the suppressive function and fate of myeloid-derived suppressor cells. Immunity 34:385–395. https://doi.org/10.1016/j.immuni.2011.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma J et al (2010) The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer 10:112. https://doi.org/10.1186/1471-2407-10-112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xiong L et al (2004) Regulating antigen presentation–anti-tumor immuno-therapy by integrative Chinese and Western medicine. Zhongguo Zhong Xi Yi Jie He Za Zhi 24:847–851

    PubMed  Google Scholar 

  23. Chan GC, Chan WK, Sze DM (2009) The effects of beta-glucan on human immune and cancer cells. J Hematol Oncol 2:25. https://doi.org/10.1186/1756-8722-2-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Batbayar S, Lee DH, Kim HW (2012) Immunomodulation of fungal beta-glucan in host defense signaling by Dectin-1. Biomol Ther (Seoul) 20:433–445. https://doi.org/10.4062/biomolther.2012.20.5.433

    Article  CAS  Google Scholar 

  25. Ma J, Becker C, Lowell CA, Underhill DM (2012) Dectin-1-triggered recruitment of light chain 3 protein to phagosomes facilitates major histocompatibility complex class II presentation of fungal-derived antigens. J Biol Chem 287:34149–34156. https://doi.org/10.1074/jbc.M112.382812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Albeituni SH, Yan J (2013) The effects of beta-glucans on dendritic cells and implications for cancer therapy. Anticancer Agents Med Chem 13:689–698

    Article  CAS  Google Scholar 

  27. Tian J et al (2013) beta-Glucan enhances antitumor immune responses by regulating differentiation and function of monocytic myeloid-derived suppressor cells. Eur J Immunol 43:1220–1230. https://doi.org/10.1002/eji.201242841

    Article  CAS  PubMed  Google Scholar 

  28. Eisenstein S et al (2013) Myeloid-derived suppressor cells as a vehicle for tumor-specific oncolytic viral therapy. Cancer Res 73:5003–5015. https://doi.org/10.1158/0008-5472.CAN-12-1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ozao-Choy J et al (2009) The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res 69:2514–2522. https://doi.org/10.1158/0008-5472.CAN-08-4709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Movahedi K et al (2010) Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res 70:5728–5739. https://doi.org/10.1158/0008-5472.CAN-09-4672

    Article  CAS  PubMed  Google Scholar 

  31. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82

    Article  CAS  Google Scholar 

  32. Dambuza IM, Brown GD (2015) C-type lectins in immunity: recent developments. Curr Opin Immunol 32:21–27. https://doi.org/10.1016/j.coi.2014.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Albeituni SH et al (2016) Yeast-derived particulate beta-glucan treatment subverts the suppression of myeloid-derived suppressor cells (MDSC) by inducing polymorphonuclear MDSC apoptosis and monocytic MDSC differentiation to APC in cancer. J Immunol 196:2167–2180. https://doi.org/10.4049/jimmunol.1501853

    Article  CAS  PubMed  Google Scholar 

  34. Zhao Y et al (2016) Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells. Nat Commun 7:12368. https://doi.org/10.1038/ncomms12368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Goodridge HS et al (2009) Differential use of CARD9 by Dectin-1 in macrophages and dendritic cells. J Immunol 182:1146–1154

    Article  CAS  Google Scholar 

  36. Gringhuis SI et al (2012) Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1beta via a noncanonical caspase-8 inflammasome. Nat Immunol 13:246–254. https://doi.org/10.1038/ni.2222

    Article  CAS  PubMed  Google Scholar 

  37. Dennehy KM et al (2008) Syk kinase is required for collaborative cytokine production induced through Dectin-1 and Toll-like receptors. Eur J Immunol 38:500–506. https://doi.org/10.1002/eji.200737741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Saeed S et al (2014) Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345:1251086. https://doi.org/10.1126/science.1251086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Quintin J et al (2012) Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12:223–232. https://doi.org/10.1016/j.chom.2012.06.006

    Article  CAS  PubMed  Google Scholar 

  40. Loures FV et al (2014) Dectin-1 induces M1 macrophages and prominent expansion of CD8+IL-17+ cells in pulmonary paracoccidioidomycosis. J Infect Dis 210:762–773. https://doi.org/10.1093/infdis/jiu136

    Article  CAS  PubMed  Google Scholar 

  41. Lefevre L et al (2010) PPARgamma ligands switched high fat diet-induced macrophage M2b polarization toward M2a thereby improving intestinal Candida elimination. PLoS ONE 5:e12828. https://doi.org/10.1371/journal.pone.0012828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Coste A et al (2003) PPARgamma promotes mannose receptor gene expression in murine macrophages and contributes to the induction of this receptor by IL-13. Immunity 19:329–339

    Article  CAS  Google Scholar 

  43. Lee DH, Kim HW (2014) Innate immunity induced by fungal beta-glucans via Dectin-1 signaling pathway. Int J Med Mushrooms 16:1–16

    Article  Google Scholar 

  44. Rosinsky C, Antony PA (2016) A role for pre-mNK cells in tumor progression. J Immunother Cancer 4:16. https://doi.org/10.1186/s40425-016-0120-6

    Article  PubMed  PubMed Central  Google Scholar 

  45. Orr MT et al (2013) MyD88 and TRIF synergistic interaction is required for TH1-cell polarization with a synthetic TLR4 agonist adjuvant. Eur J Immunol 43:2398–2408. https://doi.org/10.1002/eji.201243124

    Article  CAS  PubMed  Google Scholar 

  46. Kumar P, John V, Marathe S, Das G, Bhaskar S (2015) Mycobacterium indicus pranii induces dendritic cell activation, survival, and Th1/Th17 polarization potential in a TLR-dependent manner. J Leukoc Biol 97:511–520. https://doi.org/10.1189/jlb.1A0714-361R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tassi I et al (2009) Requirement of phospholipase C-gamma2 (PLCgamma2) for Dectin-1-induced antigen presentation and induction of TH1/TH17 polarization. Eur J Immunol 39:1369–1378. https://doi.org/10.1002/eji.200839313

    Article  CAS  PubMed  Google Scholar 

  48. Osorio F et al (2008) DC activated via Dectin-1 convert Treg into IL-17 producers. Eur J Immunol 38:3274–3281. https://doi.org/10.1002/eji.200838950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. MacDonald RS et al (2005) Environmental influences on isoflavones and saponins in soybeans and their role in colon cancer. J Nutr 135:1239–1242

    Article  CAS  Google Scholar 

  50. Poonyachoti S, Deachapunya C (2012) Modulatory effects of phytoestrogens on the expression of Fas ligand and the release of cytochrome C in normal and cancerous endometrial cells. J Med Assoc Thai 95(Suppl 12):S105-112

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Marcia Meseck for editing the manuscript. The authors thanks Dr. Jun Yan (University of Louisville) for providing the bone marrow of Dectin-1 KO C57BL/6 mice for this study.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Hui-Ming Chen performed most of the research, analyzed data and wrote the manuscript; Dr. Linus Sun and Dr. Ping-Ying Pan made contributions to interpretation of data and intellectual content. Dr. Lu-Hai Wang and Dr. Shu-Hsia Chen made substantial contribution to the conception or design of the research, important intellectual content, project supervision and wrote the manuscript with valuable contribution from all other authors.

Corresponding authors

Correspondence to Lu-Hai Wang or Shu-Hsia Chen.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Ethics approval

All animal experiments were done in accordance with approved guidelines for animal experimentation of the Mount Sinai School of Medicine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HM., Sun, L., Pan, PY. et al. Nutrient supplements from selected botanicals mediated immune modulation of the tumor microenvironment and antitumor mechanism. Cancer Immunol Immunother 70, 3435–3449 (2021). https://doi.org/10.1007/s00262-021-02927-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-02927-2

Keywords

Navigation