Skip to main content

Advertisement

Log in

Comparative analysis of the tumor immune-microenvironment of primary and brain metastases of non-small-cell lung cancer reveals organ-specific and EGFR mutation-dependent unique immune landscape

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

To evaluate the characteristics of the tumor immune-microenvironment in brain metastases of non-small-cell lung cancer (NSCLC), we investigated the immunophenotype of primary NSCLC and its brain metastasis.

Methods

Expression profiling of 770 immune-related genes in 28 tissues from primary and brain metastases of NSCLC was performed using the NanoString nCounter PanCancer Immune Profiling Panel. The immune cell profiles were validated by immunohistochemistry of 42 matched samples.

Results

Based on unsupervised clustering and principal component analysis of the immune-related gene expression profile, tumors were primarily clustered according to the involved organ and further grouped according to the EGFR mutation status. Fifty-four genes were significantly differentially expressed between primary and brain metastatic tumors. Clustering using these genes showed that tumors harboring mutated EGFR tended to be grouped together in the brain. Pathway analysis revealed that various immune-related functions involving immune regulation, T cell activity, and chemokines were enriched in primary tumors compared to brain metastases. Diverse immune-related pathways were upregulated in brain metastases of EGFR-mutated compared to EGFR-wild-type adenocarcinoma, but not in primary tumors. The interferon-γ-related gene signature was significantly decreased in brain metastases. The anti-inflammatory markers TOLLIP and HLA-G were upregulated in brain metastases. The proportions of most immune cell subsets were decreased in brain metastases, but those of macrophages and CD56dim-NK-cells were increased, as was the ratios of CD163+M2- to iNOS+M1-macrophages and NCR1+NK-cells to CD3+T cells.

Conclusions

Our findings illustrate the immune landscape of brain metastases from NSCLC and reveal potential therapeutic strategies targeting cellular and non-cellular components of the tumor immune-microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The gene-expression data were uploaded on the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE161116).

References

  1. Cagney DN, Martin AM, Catalano PJ, Redig AJ, Lin NU, Lee EQ, Wen PY, Dunn IF, Bi WL, Weiss SE, Haas-Kogan DA, Alexander BM, Aizer AA (2017) Incidence and prognosis of patients with brain metastases at diagnosis of systemic malignancy: a population-based study. Neuro Oncol 19(11):1511–1521. https://doi.org/10.1093/neuonc/nox077

    Article  PubMed  PubMed Central  Google Scholar 

  2. Riihimaki M, Hemminki A, Fallah M, Thomsen H, Sundquist K, Sundquist J, Hemminki K (2014) Metastatic sites and survival in lung cancer. Lung Cancer 86(1):78–84. https://doi.org/10.1016/j.lungcan.2014.07.020

    Article  CAS  PubMed  Google Scholar 

  3. Deeken JF, Loscher W (2007) The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 13(6):1663–1674. https://doi.org/10.1158/1078-0432.CCR-06-2854

    Article  CAS  PubMed  Google Scholar 

  4. Abdallah SM, Wong A (2018) Brain metastases in non-small-cell lung cancer: are tyrosine kinase inhibitors and checkpoint inhibitors now viable options? Curr Oncol 25(Suppl 1):S103–S114. https://doi.org/10.3747/co.25.3733

    Article  PubMed  PubMed Central  Google Scholar 

  5. Goldberg SB, Schalper KA, Gettinger SN, Mahajan A, Herbst RS, Chiang AC, Lilenbaum R, Wilson FH, Omay SB, Yu JB, Jilaveanu L, Tran T, Pavlik K, Rowen E, Gerrish H, Komlo A, Gupta R, Wyatt H, Ribeiro M, Kluger Y, Zhou G, Wei W, Chiang VL, Kluger HM (2020) Pembrolizumab for management of patients with NSCLC and brain metastases: long-term results and biomarker analysis from a non-randomised, open-label, phase 2 trial. Lancet Oncol 21(5):655–663. https://doi.org/10.1016/S1470-2045(20)30111-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cacho-Diaz B, Garcia-Botello DR, Wegman-Ostrosky T, Reyes-Soto G, Ortiz-Sanchez E, Herrera-Montalvo LA (2020) Tumor microenvironment differences between primary tumor and brain metastases. J Transl Med 18(1):1. https://doi.org/10.1186/s12967-019-02189-8

    Article  PubMed  PubMed Central  Google Scholar 

  7. Komohara Y, Ohnishi K, Kuratsu J, Takeya M (2008) Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol 216(1):15–24. https://doi.org/10.1002/path.2370

    Article  CAS  PubMed  Google Scholar 

  8. Sampson JH, Gunn MD, Fecci PE, Ashley DM (2020) Brain immunology and immunotherapy in brain tumours. Nat Rev Cancer 20(1):12–25. https://doi.org/10.1038/s41568-019-0224-7

    Article  CAS  PubMed  Google Scholar 

  9. Kim R, Keam B, Kim S, Kim M, Kim SH, Kim JW, Kim YJ, Kim TM, Jeon YK, Kim DW, Chung DH, Lee JS, Heo DS (2019) Differences in tumor microenvironments between primary lung tumors and brain metastases in lung cancer patients: therapeutic implications for immune checkpoint inhibitors. BMC Cancer 19(1):19. https://doi.org/10.1186/s12885-018-5214-8

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mansfield AS, Aubry MC, Moser JC, Harrington SM, Dronca RS, Park SS, Dong H (2016) Temporal and spatial discordance of programmed cell death-ligand 1 expression and lymphocyte tumor infiltration between paired primary lesions and brain metastases in lung cancer. Ann Oncol 27(10):1953–1958. https://doi.org/10.1093/annonc/mdw289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cesano A (2015) nCounter((R)) pancancer immune profiling panel (NanoString Technologies Inc, Seattle, WA). J Immunother Cancer 3:42. https://doi.org/10.1186/s40425-015-0088-7

    Article  PubMed  PubMed Central  Google Scholar 

  12. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, Albright A, Cheng JD, Kang SP, Shankaran V, Piha-Paul SA, Yearley J, Seiwert TY, Ribas A, McClanahan TK (2017) IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 127(8):2930–2940. https://doi.org/10.1172/JCI91190

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tomfohr J, Lu J, Kepler TB (2005) Pathway level analysis of gene expression using singular value decomposition. BMC Bioinform 6:225. https://doi.org/10.1186/1471-2105-6-225

    Article  CAS  Google Scholar 

  15. Danaher P, Warren S, Dennis L, D’Amico L, White A, Disis ML, Geller MA, Odunsi K, Beechem J, Fling SP (2017) Gene expression markers of tumor infiltrating leukocytes. J Immunother Cancer 5:18. https://doi.org/10.1186/s40425-017-0215-8

    Article  PubMed  PubMed Central  Google Scholar 

  16. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12(5):453–457. https://doi.org/10.1038/nmeth.3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, Angell H, Fredriksen T, Lafontaine L, Berger A, Bruneval P, Fridman WH, Becker C, Pages F, Speicher MR, Trajanoski Z, Galon J (2013) Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39(4):782–795. https://doi.org/10.1016/j.immuni.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  18. Lee JK, Lee J, Kim S, Kim S, Youk J, Park S, An Y, Keam B, Kim DW, Heo DS, Kim YT, Kim JS, Kim SH, Lee JS, Lee SH, Park K, Ku JL, Jeon YK, Chung DH, Park PJ, Kim J, Kim TM, Ju YS (2017) Clonal history and genetic predictors of transformation into small-cell carcinomas from lung adenocarcinomas. J Clin Oncol 35(26):3065–3074. https://doi.org/10.1200/JCO.2016.71.9096

    Article  CAS  PubMed  Google Scholar 

  19. Dong ZY, Zhang JT, Liu SY, Su J, Zhang C, Xie Z, Zhou Q, Tu HY, Xu CR, Yan LX, Li YF, Zhong WZ, Wu YL (2017) EGFR mutation correlates with uninflamed phenotype and weak immunogenicity, causing impaired response to PD-1 blockade in non-small cell lung cancer. Oncoimmunology 6(11):e1356145. https://doi.org/10.1080/2162402X.2017.1356145

    Article  PubMed  PubMed Central  Google Scholar 

  20. Isomoto K, Haratani K, Hayashi H, Shimizu S, Tomida S, Niwa T, Yokoyama T, Fukuda Y, Chiba Y, Kato R, Tanizaki J, Tanaka K, Takeda M, Ogura T, Ishida T, Ito A, Nakagawa K (2020) Impact of EGFR-TKI Treatment on the tumor immune microenvironment in EGFR mutation-positive non-small cell lung cancer. Clin Cancer Res 26(8):2037–2046. https://doi.org/10.1158/1078-0432.CCR-19-2027

    Article  CAS  PubMed  Google Scholar 

  21. Lin A, Yan WH (2018) Heterogeneity of HLA-G expression in cancers: facing the challenges. Front Immunol 9:2164. https://doi.org/10.3389/fimmu.2018.02164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Humbert-Claude M, Duc D, Dwir D, Thieren L, Sandstrom von Tobel J, Begka C, Legueux F, Velin D, Maillard MH, Do KQ, Monnet-Tschudi F, Tenenbaum L (2016) Tollip, an early regulator of the acute inflammatory response in the substantia nigra. J Neuroinflammation 13(1):303. https://doi.org/10.1186/s12974-016-0766-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang S, Song R, Wang Z, Jing Z, Wang S, Ma J (2018) S100A8/A9 in inflammation. Front Immunol 9:1298. https://doi.org/10.3389/fimmu.2018.01298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hu VH, Luthert PJ, Derrick T, Pullin J, Weiss HA, Massae P, Mtuy T, Makupa W, Essex D, Mabey DC, Bailey RL, Holland MJ, Burton MJ (2016) Immunohistochemical analysis of scarring trachoma indicates infiltration by natural killer and undefined CD45 negative cells. PLoS Negl Trop Dis 10(5):e0004734. https://doi.org/10.1371/journal.pntd.0004734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lisi L, Ciotti GM, Braun D, Kalinin S, Curro D, Dello Russo C, Coli A, Mangiola A, Anile C, Feinstein DL, Navarra P (2017) Expression of iNOS, CD163 and ARG-1 taken as M1 and M2 markers of microglial polarization in human glioblastoma and the surrounding normal parenchyma. Neurosci Lett 645:106–112. https://doi.org/10.1016/j.neulet.2017.02.076

    Article  CAS  PubMed  Google Scholar 

  26. Kudo Y, Haymaker C, Zhang J, Reuben A, Duose DY, Fujimoto J, Roy-Chowdhuri S, Solis Soto LM, Dejima H, Parra ER, Mino B, Abraham R, Ikeda N, Vaporcyan A, Gibbons D, Zhang J, Lang FF, Luthra R, Lee JJ, Moran C, Huse JT, Kadara H, Wistuba II (2019) Suppressed immune microenvironment and repertoire in brain metastases from patients with resected non-small-cell lung cancer. Ann Oncol 30(9):1521–1530. https://doi.org/10.1093/annonc/mdz207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shih DJH, Nayyar N, Bihun I, Dagogo-Jack I, Gill CM, Aquilanti E, Bertalan M, Kaplan A, D’Andrea MR, Chukwueke U, Ippen FM, Alvarez-Breckenridge C, Camarda ND, Lastrapes M, McCabe D, Kuter B, Kaufman B, Strickland MR, Martinez-Gutierrez JC, Nagabhushan D, De Sauvage M, White MD, Castro BA, Hoang K, Kaneb A, Batchelor ED, Paek SH, Park SH, Martinez-Lage M, Berghoff AS, Merrill P, Gerstner ER, Batchelor TT, Frosch MP, Frazier RP, Borger DR, Iafrate AJ, Johnson BE, Santagata S, Preusser M, Cahill DP, Carter SL, Brastianos PK (2020) Genomic characterization of human brain metastases identifies drivers of metastatic lung adenocarcinoma. Nat Genet 52(4):371–377. https://doi.org/10.1038/s41588-020-0592-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Offin M, Rizvi H, Tenet M, Ni A, Sanchez-Vega F, Li BT, Drilon A, Kris MG, Rudin CM, Schultz N, Arcila ME, Ladanyi M, Riely GJ, Yu H, Hellmann MD (2019) Tumor mutation burden and efficacy of EGFR-tyrosine kinase inhibitors in patients with EGFR-mutant lung cancers. Clin Cancer Res 25(3):1063–1069. https://doi.org/10.1158/1078-0432.CCR-18-1102

    Article  CAS  PubMed  Google Scholar 

  29. Hastings K, Yu HA, Wei W, Sanchez-Vega F, DeVeaux M, Choi J, Rizvi H, Lisberg A, Truini A, Lydon CA, Liu Z, Henick BS, Wurtz A, Cai G, Plodkowski AJ, Long NM, Halpenny DF, Killam J, Oliva I, Schultz N, Riely GJ, Arcila ME, Ladanyi M, Zelterman D, Herbst RS, Goldberg SB, Awad MM, Garon EB, Gettinger S, Hellmann MD, Politi K (2019) EGFR mutation subtypes and response to immune checkpoint blockade treatment in non-small-cell lung cancer. Ann Oncol 30(8):1311–1320. https://doi.org/10.1093/annonc/mdz141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Muller-Tidow C, Schwable J, Steffen B, Tidow N, Brandt B, Becker K, Schulze-Bahr E, Halfter H, Vogt U, Metzger R, Schneider PM, Buchner T, Brandts C, Berdel WE, Serve H (2004) High-throughput analysis of genome-wide receptor tyrosine kinase expression in human cancers identifies potential novel drug targets. Clin Cancer Res 10(4):1241–1249. https://doi.org/10.1158/1078-0432.ccr-0954-03

    Article  PubMed  Google Scholar 

  31. Pickup M, Novitskiy S, Moses HL (2013) The roles of TGFbeta in the tumour microenvironment. Nat Rev Cancer 13(11):788–799. https://doi.org/10.1038/nrc3603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Giaccone G, Bazhenova LA, Nemunaitis J, Tan M, Juhasz E, Ramlau R, van den Heuvel MM, Lal R, Kloecker GH, Eaton KD, Chu Q, Dunlop DJ, Jain M, Garon EB, Davis CS, Carrier E, Moses SC, Shawler DL, Fakhrai H (2015) A phase III study of belagenpumatucel-L, an allogeneic tumour cell vaccine, as maintenance therapy for non-small cell lung cancer. Eur J Cancer 51(16):2321–2329. https://doi.org/10.1016/j.ejca.2015.07.035

    Article  CAS  PubMed  Google Scholar 

  33. Akhurst RJ, Hata A (2012) Targeting the TGFbeta signalling pathway in disease. Nat Rev Drug Discov 11(10):790–811. https://doi.org/10.1038/nrd3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guadagno E, Presta I, Maisano D, Donato A, Pirrone CK, Cardillo G, Corrado SD, Mignogna C, Mancuso T, Donato G, De Basso DCM, Malara M (2018) Role of macrophages in brain tumor growth and progression. Int J Mol Sci. https://doi.org/10.3390/ijms19041005

    Article  PubMed  PubMed Central  Google Scholar 

  35. Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H (2012) The brain tumor microenvironment. Glia 60(3):502–514. https://doi.org/10.1002/glia.21264

    Article  PubMed  Google Scholar 

  36. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, Olson OC, Quick ML, Huse JT, Teijeiro V, Setty M, Leslie CS, Oei Y, Pedraza A, Zhang J, Brennan CW, Sutton JC, Holland EC, Daniel D, Joyce JA (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19(10):1264–1272. https://doi.org/10.1038/nm.3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hung JY, Horn D, Woodruff K, Prihoda T, LeSaux C, Peters J, Tio F, Abboud-Werner SL (2014) Colony-stimulating factor 1 potentiates lung cancer bone metastasis. Lab Invest 94(4):371–381. https://doi.org/10.1038/labinvest.2014.1

    Article  CAS  PubMed  Google Scholar 

  38. Morimoto K, Nakajima K (2019) Role of the immune system in the development of the central nervous system. Front Neurosci 13:916. https://doi.org/10.3389/fnins.2019.00916

    Article  PubMed  PubMed Central  Google Scholar 

  39. Moretta L (2010) Dissecting CD56dim human NK cells. Blood 116(19):3689–3691. https://doi.org/10.1182/blood-2010-09-303057

    Article  CAS  PubMed  Google Scholar 

  40. Geller MA, Miller JS (2011) Use of allogeneic NK cells for cancer immunotherapy. Immunotherapy 3(12):1445–1459. https://doi.org/10.2217/imt.11.131

    Article  CAS  PubMed  Google Scholar 

  41. Golan I, de Rodriguez FL, Costoya JA (2018) NK cell-based glioblastoma immunotherapy. Cancers (Basel). https://doi.org/10.3390/cancers10120522

    Article  Google Scholar 

  42. Lin A, Zhu CC, Chen HX, Chen BF, Zhang X, Zhang JG, Wang Q, Zhou WJ, Hu W, Yang HH, Xu HH, Yan WH (2010) Clinical relevance and functional implications for human leucocyte antigen-g expression in non-small-cell lung cancer. J Cell Mol Med 14(9):2318–2329. https://doi.org/10.1111/j.1582-4934.2009.00858.x

    Article  CAS  PubMed  Google Scholar 

  43. Agaugue S, Carosella ED, Rouas-Freiss N (2011) Role of HLA-G in tumor escape through expansion of myeloid-derived suppressor cells and cytokinic balance in favor of Th2 versus Th1/Th17. Blood 117(26):7021–7031. https://doi.org/10.1182/blood-2010-07-294389

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Yeon Duk Woo (Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea) for manuscript editing.

Funding

This work was supported by the Basic Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (MSIT) (grant No.: 2020R1A4A1017515) and the Basic Science Research through the NRF funded by the Ministry of Education, Science and Technology (MEST) Program (grant No.: NRF-2016R1D1A1B01015964), Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

DHC, YKJ and YAK designed and supervised the study. SGS, SK, JK, JY and BH performed experiments and acquired the data. SGS, SK, YAK and YKJ analyzed the results. SGS and YKJ made the figures and tables. SGS, YKJ and DHC wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yoon Kyung Jeon or Doo Hyun Chung.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This study was approved by the Institutional Review Board of SNUH (No. 1404–102-572) and was performed in accordance with the World Medical Association Declaration of Helsinki. The requirement for informed consent was waived because of the retrospective nature of the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1506 KB)

Supplementary file2 (PDF 64 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S.G., Kim, S., Koh, J. et al. Comparative analysis of the tumor immune-microenvironment of primary and brain metastases of non-small-cell lung cancer reveals organ-specific and EGFR mutation-dependent unique immune landscape. Cancer Immunol Immunother 70, 2035–2048 (2021). https://doi.org/10.1007/s00262-020-02840-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02840-0

Keywords

Navigation