Skip to main content

Advertisement

Log in

Selective BET-bromodomain inhibition by JQ1 suppresses dendritic cell maturation and antigen-specific T-cell responses

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Bromo- and extra-terminal domain (BET) inhibitors represent potential therapeutic approaches in solid and hematological malignancies that are currently analyzed in several clinical trials. Additionally, BET are involved in the epigenetic regulation of immune responses by macrophages and dendritic cells (DCs), that play a central role in the regulation of immune responses, indicating that cancer treatment with BET inhibitors can promote immunosuppressive effects. The aim of this study was to further characterize the effects of selective BET inhibition by JQ1 on DC maturation and DC-mediated antigen-specific T-cell responses. Selective BET inhibition by JQ1 impairs LPS-induced DC maturation and inhibits the migrational activity of DCs, while antigen uptake is not affected. JQ1-treated DCs show reduced ability to induce antigen-specific T-cell proliferation. Moreover, antigen-specific T cells co-cultured with JQ1-treated DCs exhibit an inactive phenotype and reduced cytokine production. JQ1-treated mice show reduced immune responses in vivo to sublethal doses of LPS, characterized by a reduced white blood cell count, an immature phenotype of splenic DCs and T cells and lower blood levels of IL-6. In our study, we demonstrate that selective BET inhibition by JQ1, a drug currently tested in clinical trials for malignant diseases, has profound effects on DC maturation and DC-mediated antigen-specific T-cell responses. These immunosuppressive effects can result in the induction of possible infectious side effects in cancer treatments. In addition, based on our results, these compounds should not be used in combinatorial regimes using immunotherapeutic approaches such as check point inhibitors, T-cell therapies, or vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BET:

Bromo- and extra-terminal domain

BMDCs:

Bone marrow-derived dendritic cells

BRD4:

Bromodomain containing protein 4

CCL:

C–C motif chemokine ligand

CCR:

C–C chemokine receptor type

CFSE:

Carboxyfluorescein succinimidyl ester

DCs:

Dendritic cells

DMSO:

Dimethyl sulfoxide

ERK:

Extracellular signal-regulated kinases

FACS:

Fluorescence-activated cell sorter

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

HLA-DR:

Human leukocyte antigen DR

IL-1:

Interleukin-1

IL-10:

Interleukin-10

IL-12:

Interleukin-12

IL-4:

Interleukin-4

IL-6:

Interleukin-6

INFγ:

Interferon gamma

LPS:

Lipopolysaccharide

mAb:

Monoclonal antibody

MACS:

Magnetic cell separation

MAPK:

Mitogen-activated protein kinases

MHC:

Major histocompatibility complex

MIP-3β:

Macrophage inflammatory protein-3 beta

MoDCs:

Monocyte-derived dendritic cells

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

OVA:

Ovalbumin

PD-L1:

Programmed cell death 1 ligand 1

RT qPCR:

Real-time quantitative polymerase chain reaction

STAT:

Signal transducer and activator of transcription

TLR:

Toll-like receptor

TNFα:

Tumor necrosis factor alpha

TNFβ:

Tumor necrosis factor beta

β-ME:

Beta-mercaptoethanol

References

  1. Shi X, Liu C, Liu B, Chen J, Wu X, Gong W (2018) JQ1: a novel potential therapeutic target. Pharmazie 73(9):491–493. https://doi.org/10.1691/ph.2018.8480

    Article  CAS  PubMed  Google Scholar 

  2. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, Philpott M, Munro S, McKeown MR, Wang Y, Christie AL, West N, Cameron MJ, Schwartz B, Heightman TD, La Thangue N, French CA, Wiest O, Kung AL, Knapp S, Bradner JE (2010) Selective inhibition of BET bromodomains. Nature 468(7327):1067–1073. https://doi.org/10.1038/nature09504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, Chesi M, Schinzel AC, McKeown MR, Heffernan TP, Vakoc CR, Bergsagel PL, Ghobrial IM, Richardson PG, Young RA, Hahn WC, Anderson KC, Kung AL, Bradner JE, Mitsiades CS (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146(6):904–917. https://doi.org/10.1016/j.cell.2011.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. French CA, Miyoshi I, Aster JC, Kubonishi I, Kroll TG, Dal Cin P, Vargas SO, Perez-Atayde AR, Fletcher JA (2001) BRD4 bromodomain gene rearrangement in aggressive carcinoma with translocation t(15;19). Am J Pathol 159(6):1987–1992. https://doi.org/10.1016/S0002-9440(10)63049-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Filippakopoulos P, Knapp S (2014) Targeting bromodomains: epigenetic readers of lysine acetylation. Nat Rev Drug Discov 13(5):337–356. https://doi.org/10.1038/nrd4286

    Article  CAS  PubMed  Google Scholar 

  6. Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung C-W, Chandwani R, Marazzi I, Wilson P, Coste H, White J, Kirilovsky J, Rice CM, Lora JM, Prinjha RK, Lee K, Tarakhovsky A (2010) Suppression of inflammation by a synthetic histone mimic. Nature 468(7327):1119–1123. https://doi.org/10.1038/nature09589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12(4):265–277. https://doi.org/10.1038/nrc3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12(4):269–281. https://doi.org/10.1038/nri3191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol. https://doi.org/10.1146/annurev.immunol.18.1.767

    Article  PubMed  Google Scholar 

  10. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252. https://doi.org/10.1038/32588

    Article  CAS  PubMed  Google Scholar 

  11. Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179(4):1109–1118

    Article  CAS  Google Scholar 

  12. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol. https://doi.org/10.1146/annurev.immunol.21.120601.141126

    Article  PubMed  Google Scholar 

  13. West MA, Wallin RPA, Matthews SP, Svensson HG, Zaru R, Ljunggren H-G, Prescott AR, Watts C (2004) Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science 305(5687):1153–1157. https://doi.org/10.1126/science.1099153

    Article  CAS  PubMed  Google Scholar 

  14. Platt CD, Ma JK, Chalouni C, Ebersold M, Bou-Reslan H, Carano RAD, Mellman I, Delamarre L (2010) Mature dendritic cells use endocytic receptors to capture and present antigens. Proc Natl Acad Sci USA 107(9):4287–4292. https://doi.org/10.1073/pnas.0910609107

    Article  PubMed  Google Scholar 

  15. Knight SC, Iqball S, Roberts MS, Macatonia S, Bedford PA (1998) Transfer of antigen between dendritic cells in the stimulation of primary T cell proliferation. Eur J Immunol 28(5):1636–1644. https://doi.org/10.1002/(SICI)1521-4141(199805)28:05%3c1636:AID-IMMU1636%3e3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  16. Campbell JJ, Butcher EC (2000) Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr Opin Immunol 12(3):336–341

    Article  CAS  Google Scholar 

  17. Kapsenberg ML (2003) Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 3(12):984–993. https://doi.org/10.1038/nri1246

    Article  CAS  PubMed  Google Scholar 

  18. Appleman LJ, Berezovskaya A, Grass I, Boussiotis VA (2000) CD28 costimulation mediates T cell expansion via IL-2-independent and IL-2-dependent regulation of cell cycle progression. J Immunol 164(1):144–151

    Article  CAS  Google Scholar 

  19. Cheng J, Montecalvo A, Kane LP (2011) Regulation of NF-kappaB induction by TCR/CD28. Immunol Res 50(2–3):113–117. https://doi.org/10.1007/s12026-011-8216-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Watts TH (2005) TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol. https://doi.org/10.1146/annurev.immunol.23.021704.115839

    Article  PubMed  Google Scholar 

  21. Kalinski P, Hilkens CM, Wierenga EA, Kapsenberg ML (1999) T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today 20(12):561–567

    Article  CAS  Google Scholar 

  22. Steinman RM (2003) The control of immunity and tolerance by dendritic cell. Pathol Biol (Paris) 51(2):59–60

    Article  CAS  Google Scholar 

  23. Matheu MP, Sen D, Cahalan MD, Parker I (2008) Generation of bone marrow derived murine dendritic cells for use in 2-photon imaging. J Vis Exp. https://doi.org/10.3791/773

    Article  PubMed  PubMed Central  Google Scholar 

  24. Heine A, Held SAE, Daecke SN, Wallner S, Yajnanarayana SP, Kurts C, Wolf D, Brossart P (2013) The JAK-inhibitor ruxolitinib impairs dendritic cell function in vitro and in vivo. Blood 122(7):1192–1202. https://doi.org/10.1182/blood-2013-03-484642

    Article  CAS  PubMed  Google Scholar 

  25. Appel S, Mirakaj V, Bringmann A, Weck MM, Grünebach F, Brossart P (2005) PPAR-gamma agonists inhibit toll-like receptor-mediated activation of dendritic cells via the MAP kinase and NF-kappaB pathways. Blood 106(12):3888–3894. https://doi.org/10.1182/blood-2004-12-4709

    Article  CAS  PubMed  Google Scholar 

  26. Weck MM, Appel S, Werth D, Sinzger C, Bringmann A, Grünebach F, Brossart P (2008) hDectin-1 is involved in uptake and cross-presentation of cellular antigens. Blood 111(8):4264–4272. https://doi.org/10.1182/blood-2006-10-051375

    Article  CAS  PubMed  Google Scholar 

  27. Muller S, Filippakopoulos P, Knapp S (2011) Bromodomains as therapeutic targets. Expert Rev Mol Med. https://doi.org/10.1017/s1462399411001992

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264. https://doi.org/10.1038/nrc3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun Y, Wang Y, Toubai T, Oravecz-Wilson K, Liu C, Mathewson N, Wu J, Rossi C, Cummings E, Wu D, Wang S, Reddy P (2015) BET bromodomain inhibition suppresses graft-versus-host disease after allogeneic bone marrow transplantation in mice. Blood 125(17):2724–2728. https://doi.org/10.1182/blood-2014-08-598037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schilderink R, Bell M, Reginato E, Patten C, Rioja I, Hilbers FW, Kabala PA, Reedquist KA, Tough DF, Tak PP, Prinjha RK, de Jonge WJ (2016) BET bromodomain inhibition reduces maturation and enhances tolerogenic properties of human and mouse dendritic cells. Mol Immunol. https://doi.org/10.1016/j.molimm.2016.09.010

    Article  PubMed  Google Scholar 

  31. Toniolo PA, Liu S, Yeh JE, Moraes-Vieira PM, Walker SR, Vafaizadeh V, Barbuto JAM, Frank DA (2015) Inhibiting STAT5 by the BET bromodomain inhibitor JQ1 disrupts human dendritic cell maturation. J Immunol 194(7):3180–3190. https://doi.org/10.4049/jimmunol.1401635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Belkina AC, Nikolajczyk BS, Denis GV (2013) BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses. J Immunol 190(7):3670–3678. https://doi.org/10.4049/jimmunol.1202838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meng S, Zhang L, Tang Y, Tu Q, Zheng L, Yu L, Murray D, Cheng J, Kim SH, Zhou X, Chen J (2014) BET inhibitor JQ1 blocks inflammation and bone destruction. J Dent Res 93(7):657–662. https://doi.org/10.1177/0022034514534261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sun Y, Huang J, Song K (2015) BET protein inhibition mitigates acute myocardial infarction damage in rats via the TLR4/TRAF6/NF-κB pathway. Exp Ther Med 10(6):2319–2324. https://doi.org/10.3892/etm.2015.2789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wienerroither S, Rauch I, Rosebrock F, Jamieson AM, Bradner J, Muhar M, Zuber J, Muller M, Decker T (2014) Regulation of NO synthesis, local inflammation, and innate immunity to pathogens by BET family proteins. Mol Cell Biol 34(3):415–427. https://doi.org/10.1128/MCB.01353-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu S, Walker SR, Nelson EA, Cerulli R, Xiang M, Toniolo PA, Qi J, Stone RM, Wadleigh M, Bradner JE, Frank DA (2014) Targeting STAT5 in hematologic malignancies through inhibition of the bromodomain and extra-terminal (BET) bromodomain protein BRD2. Mol Cancer Ther 13(5):1194–1205. https://doi.org/10.1158/1535-7163.MCT-13-0341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lehtonen A, Matikainen S, Miettinen M, Julkunen I (2002) Granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced STAT5 activation and target-gene expression during human monocyte/macrophage differentiation. J Leukoc Biol 71(3):511–519

    CAS  PubMed  Google Scholar 

  38. Heine A, Held SAE, Daecke SN, Riethausen K, Kotthoff P, Flores C, Kurts C, Brossart P (2015) The VEGF-receptor inhibitor axitinib impairs dendritic cell phenotype and function. PLoS ONE 10(6):e0128897. https://doi.org/10.1371/journal.pone.0128897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Arrighi JF, Rebsamen M, Rousset F, Kindler V, Hauser C (2001) A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-alpha, and contact sensitizers. J Immunol 166(6):3837–3845. https://doi.org/10.4049/jimmunol.166.6.3837

    Article  CAS  PubMed  Google Scholar 

  40. Wang H, Huang W, Liang M, Shi Y, Zhang C, Li Q, Liu M, Shou Y, Yin H, Zhu X, Sun X, Hu Y, Shen Z (2018) (+)-JQ1 attenuated LPS-induced microglial inflammation via MAPK/NFκB signaling. Cell Biosci. https://doi.org/10.1186/s13578-018-0258-7

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, Qin S, Lanzavecchia A (1998) Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 28(9):2760–2769. https://doi.org/10.1002/(SICI)1521-4141(199809)28:09%3c2760:AID-IMMU2760%3e3.0.CO;2-N

    Article  CAS  PubMed  Google Scholar 

  42. Liu Z, Roche PA (2015) Macropinocytosis in phagocytes: regulation of MHC class-II-restricted antigen presentation in dendritic cells. Front Physiol. https://doi.org/10.3389/fphys.2015.00001

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mele DA, Salmeron A, Ghosh S, Huang H-R, Bryant BM, Lora JM (2013) BET bromodomain inhibition suppresses TH17-mediated pathology. J Exp Med 210(11):2181–2190. https://doi.org/10.1084/jem.20130376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fu F, Li Y, Qian S, Lu L, Chambers FD, Starzl TE, Fung JJ, Thomson AW (1997) Costimulatory molecule-deficient dendritic cell progenitors induce T cell hyporesponsiveness in vitro and prolong the survival of vascularized cardiac allografts. Transpl Proc 29(1–2):1310

    Article  CAS  Google Scholar 

  45. Georgiev P, Wang Y, Muise ES, Bandi ML, Blumenschein W, Sathe M, Pinheiro EM, Shumway SD (2019) BET bromodomain inhibition suppresses human T cell function. Immunohorizons 3(7):294–305. https://doi.org/10.4049/immunohorizons.1900037

    Article  CAS  PubMed  Google Scholar 

  46. Kaplan MH, Daniel C, Schindler U, Grusby MJ (1998) Stat proteins control lymphocyte proliferation by regulating p27Kip1 expression. Mol Cell Biol 18(4):1996–2003

    Article  CAS  Google Scholar 

  47. Hogg SJ, Vervoort SJ, Deswal S, Ott CJ, Li J, Cluse LA, Beavis PA, Darcy PK, Martin BP, Spencer A, Traunbauer AK, Sadovnik I, Bauer K, Valent P, Bradner JE, Zuber J, Shortt J, Johnstone RW (2017) BET-bromodomain inhibitors engage the host immune system and regulate expression of the immune checkpoint ligand PD-L1. Cell Rep 18(9):2162–2174. https://doi.org/10.1016/j.celrep.2017.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Salio M, Cella M, Suter M, Lanzavecchia A (1999) Inhibition of dendritic cell maturation by herpes simplex virus. Eur J Immunol 29(10):3245–3253. https://doi.org/10.1002/(SICI)1521-4141(199910)29:10%3c3245:AID-IMMU3245%3e3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was in part supported by a scholarship awarded to Jens Nolting from Else Kröner-Fresenius-Stifung.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Jens Nolting; methodology: Jens Nolting; formal analysis and investigation: Niklas Remke, Savita Bisht, and Sebastian Oberbeck; writing– original draft preparation: Niklas Remke; writing—review and editing: Jens Nolting and Peter Brossart; funding acquisition: Jens Nolting; supervision: Peter Brossart.

Corresponding author

Correspondence to Peter Brossart.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Animal experiments described here comply with Directive 2010/63/EU and were approved by the government of the state of North Rhine-Westphalia. Mice were maintained according to the guidelines of the Federation of European Laboratory Animal Science Associations (FELASA). The studies were approved by the EC (131/11, 173/09).

Animal source

The strains C57BL/6-Tg(TcraTcrb)1100Mjb/Crl (OT I Mouse) and C57BL/6-Tg(TcraTcrb)425Cbn/Crl (OT II Mouse) were generously provided by J.G. van den Boorn (Dept. of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany). Each strain used in the study was originally supplied by Charles River.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 145 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remke, N., Bisht, S., Oberbeck, S. et al. Selective BET-bromodomain inhibition by JQ1 suppresses dendritic cell maturation and antigen-specific T-cell responses. Cancer Immunol Immunother 70, 107–121 (2021). https://doi.org/10.1007/s00262-020-02665-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02665-x

Keywords

Navigation