Skip to main content

Advertisement

Log in

LincRNA-p21 knockdown reversed tumor-associated macrophages function by promoting MDM2 to antagonize* p53 activation and alleviate breast cancer development

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Tumor-associated macrophages (TAMs) are important regulators of the complex interplay between immune system and breast cancer. TAMs fuel the cancer progression and metastasis by reprogramming their specific functional phenotype in cancer settings. Therefore, it is important to clarify the mechanisms of shaping specific functional phenotype of macrophages in tumor milieu. LncRNA profiles of TAMs were identified by LncRNA microarray. Flow cytometry was used to detect the surface markers of TAMs. The co-localization among lincRNA-p21, p53 and Mouse Double Minute 2 (MDM2) was identified by FISH probe and immunofluorescence. PyVT-MMTV and BALB/c mice were used for in vivo analysis. In the present work, we found that lincRNA-p21 significantly up-regulated in 4T1 educated macrophages. LincRNA-p21 knockdown facilitated macrophage polarization into pro-inflammatory M1 in tumor microenvironment, which might be caused by MDM2 eliciting proteasome-dependent degradation to p53 and activated NF-κB and STAT3 pathway. TAMs with lincRNA-p21 knockdown induced cancer cell apoptosis, inhibited tumor cell migration and invasion. In vivo, lincRNA-p21 knockdown macrophage adoptive transfer could alleviate breast cancer progression. Our results indicated that lincRNA-p21 was a key regulator of TAMs function in tumor milieu. Our data also shed a light on novel therapeutic targets of tumors characterized by monocytes/macrophages infiltration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACK:

Red blood cell lysis buffer

CCK-8:

Cell counting kit-8

CTL:

Cytotoxic T lymphocyte

GO:

Gene ontology

LLC:

Lewis lung carcinoma

lncRNA:

Long non-coding RNA

miRNA:

Small RNA

NK:

Natural killer

ROS:

Reactive oxygen species

siRNA:

Small interfering RNA

SPF:

Specific pathogen-free

TAMs:

Tumor-associated macrophages

4T1CM:

4T1 mouse breast tumor cell supernatant

References

  1. DeSantis C, Ma J, Bryan L (2013) Jemal A (2014) Breast cancer statistics. CA-Cancer J Clin 64(1):52–62. https://doi.org/10.3322/caac.21203

    Article  PubMed  Google Scholar 

  2. Huneidi SA, Wright NC, Atkinson A, Bhatia S, Singh P (2018) Factors associated with physical inactivity in adult breast cancer survivors-A population-based study. Cancer Med. https://doi.org/10.1002/cam4.1847

    Article  PubMed  PubMed Central  Google Scholar 

  3. Matsumoto A, Jinno H, Ando T, Fujii T, Nakamura T, Saito J, Takahashi M, Hayashida T, Kitagawa Y (2016) Biological markers of invasive breast cancer. Jpn J Clin Oncol 46(2):99–105. https://doi.org/10.1093/jjco/hyv153

    Article  PubMed  Google Scholar 

  4. King TA, Morrow M (2015) Surgical issues in patients with breast cancer receiving neoadjuvant chemotherapy. Nat Rev Clin Oncol 12(6):335–343. https://doi.org/10.1038/nrclinonc.2015.63

    Article  PubMed  Google Scholar 

  5. Soysal SD, Tzankov A, Muenst SE (2015) Role of the tumor microenvironment in breast cancer. Pathobiology 82(3–4):142–152. https://doi.org/10.1159/000430499

    Article  CAS  PubMed  Google Scholar 

  6. Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C, Marini FC (2016) Tumor-associated stromal cells as key contributors to the tumor microenvironment. Br Cancer Res 18(1):84. https://doi.org/10.1186/s13058-016-0740-2

    Article  CAS  Google Scholar 

  7. Goswami KK, Ghosh T, Ghosh S, Sarkar M, Bose A, Baral R (2017) Tumor promoting role of anti-tumor macrophages in tumor microenvironment. Cell Immunol 316:1–10. https://doi.org/10.1016/j.cellimm.2017.04.005

    Article  CAS  PubMed  Google Scholar 

  8. Murray PJ (2017) Macrophage polarization. Annu Rev Physiol 79:541–566. https://doi.org/10.1146/annurev-physiol-022516-034339

    Article  CAS  PubMed  Google Scholar 

  9. Liu YC, Zou XB, Chai YF, Yao YM (2014) Macrophage polarization in inflammatory diseases. Int J Biol Sci 10(5):520–529. https://doi.org/10.7150/ijbs.8879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tariq M, Zhang J, Liang G, Ding L, He Q, Yang B (2017) Macrophage polarization: anti-cancer strategies to target tumor-associated macrophage in breast cancer. J Cell Biochem 118(9):2484–2501. https://doi.org/10.1002/jcb.25895

    Article  CAS  PubMed  Google Scholar 

  11. Mills CD, Lenz LL, Harris RA (2016) A breakthrough: macrophage-directed cancer immunotherapy. Cancer Res 76(3):513–516. https://doi.org/10.1158/0008-5472.can-15-1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ngambenjawong C, Gustafson HH, Pun SH (2017) Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev 114:206–221. https://doi.org/10.1016/j.addr.2017.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dehne N, Mora J, Namgaladze D, Weigert A, Brune B (2017) Cancer cell and macrophage cross-talk in the tumor microenvironment. Curr Opin Pharmacol 35:12–19. https://doi.org/10.1016/j.coph.2017.04.007

    Article  CAS  PubMed  Google Scholar 

  14. Aras S, Zaidi MR (2017) TAMeless traitors: macrophages in cancer progression and metastasis. Br J Cancer 117(11):1583–1591. https://doi.org/10.1038/bjc.2017.356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14(7):399–416. https://doi.org/10.1038/nrclinonc.2016.217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Woo SR, Corrales L, Gajewski TF (2015) Innate immune recognition of cancer. Annu Rev Immunol 33:445–474. https://doi.org/10.1146/annurev-immunol-032414-112043

    Article  CAS  PubMed  Google Scholar 

  17. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889–896. https://doi.org/10.1038/ni.1937

    Article  CAS  PubMed  Google Scholar 

  18. Schmitt AM, Chang HY (2016) Long noncoding RNAs in cancer pathways. Cancer Cell 29(4):452–463. https://doi.org/10.1016/j.ccell.2016.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferre F, Colantoni A, Helmer-Citterich M (2016) Revealing protein-lncRNA interaction. Brief Bioinform 17(1):106–116. https://doi.org/10.1093/bib/bbv031

    Article  CAS  PubMed  Google Scholar 

  20. Marchese FP, Raimondi I, Huarte M (2017) The multidimensional mechanisms of long noncoding RNA function. Genome Biol 18(1):206. https://doi.org/10.1186/s13059-017-1348-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen YG, Satpathy AT, Chang HY (2017) Gene regulation in the immune system by long noncoding RNAs. Nat Immunol 18(9):962–972. https://doi.org/10.1038/ni.3771

    Article  CAS  PubMed  Google Scholar 

  22. Fischer M (2017) Census and evaluation of p53 target genes. Oncogene 36(28):3943–3956. https://doi.org/10.1038/onc.2016.502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu G, Cai J, Han Y, Chen J, Huang ZP, Chen C, Cai Y, Huang H, Yang Y, Liu Y, Xu Z, He D, Zhang X, Hu X, Pinello L, Zhong D, He F, Yuan GC, Wang DZ, Zeng C (2014) LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation 130(17):1452–1465. https://doi.org/10.1161/circulationaha.114.011675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Castellano JJ, Navarro A, Vinolas N, Marrades RM, Moises J, Cordeiro A, Saco A, Munoz C, Fuster D, Molins L, Ramirez J, Monzo M (2016) LincRNA-p21 impacts prognosis in resected non-small cell lung cancer patients through angiogenesis regulation. J Thorac Oncol 11(12):2173–2182. https://doi.org/10.1016/j.jtho.2016.07.015

    Article  PubMed  Google Scholar 

  25. Spurlock CF 3rd, Tossberg JT, Matlock BK, Olsen NJ, Aune TM (2014) Methotrexate inhibits NF-kappaB activity via long intergenic (noncoding) RNA-p21 induction. Arthritis Rheumatol 66(11):2947–2957. https://doi.org/10.1002/art.38805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shen Y, Liu Y, Sun T, Yang W (2017) LincRNA-p21 knockdown enhances radiosensitivity of hypoxic tumor cells by reducing autophagy through HIF-1/Akt/mTOR/P70S6K pathway. Exp Cell Res 358(2):188–198. https://doi.org/10.1016/j.yexcr.2017.06.016

    Article  CAS  PubMed  Google Scholar 

  27. Na YR, Je S, Seok SH (2018) Metabolic features of macrophages in inflammatory diseases and cancer. Cancer Lett 413:46–58. https://doi.org/10.1016/j.canlet.2017.10.044

    Article  CAS  PubMed  Google Scholar 

  28. Artyomov MN, Sergushichev A, Schilling JD (2016) Integrating immunometabolism and macrophage diversity. Semin Immunol 28(5):417–424. https://doi.org/10.1016/j.smim.2016.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tan HY, Wang N, Li S, Hong M, Wang X, Feng Y (2016) The reactive oxygen species in macrophage polarization: reflecting its dual role in progression and treatment of human diseases. Oxid Med Cell Longev 2016:2795090. https://doi.org/10.1155/2016/2795090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wade M, Li YC, Wahl GM (2013) MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer 13(2):83–96. https://doi.org/10.1038/nrc3430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jin X, Yao T, Zhou Z, Zhu J, Zhang S, Hu W, Shen C (2015) Advanced glycation end products enhance macrophages polarization into M1 phenotype through activating RAGE/NF-kappaB pathway. Biomed Res Int 2015:732450. https://doi.org/10.1155/2015/732450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Luo Z, Wang Q, Lau WB, Lau B, Xu L, Zhao L, Yang H, Feng M, Xuan Y, Yang Y, Lei L, Wang C, Yi T, Zhao X, Wei Y, Zhou S (2016) Tumor microenvironment: the culprit for ovarian cancer metastasis? Cancer Lett 377(2):174–182. https://doi.org/10.1016/j.canlet.2016.04.038

    Article  CAS  PubMed  Google Scholar 

  33. Choi J, Gyamfi J, Jang H, Koo JS (2018) The role of tumor-associated macrophage in breast cancer biology. Histol Histopathol 33(2):133–145. https://doi.org/10.14670/HH-11-916

    Article  CAS  PubMed  Google Scholar 

  34. Sica A, Erreni M, Allavena P, Porta C (2015) Macrophage polarization in pathology. Cell Mol Life Sci 72(21):4111–4126. https://doi.org/10.1007/s00018-015-1995-y

    Article  CAS  PubMed  Google Scholar 

  35. Rothlin CV, Carrera-Silva EA, Bosurgi L, Ghosh S (2015) TAM receptor signaling in immune homeostasis. Annu Rev Immunol 33:355–391. https://doi.org/10.1146/annurev-immunol-032414-112103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Qiu SQ, Waaijer SJH, Zwager MC, de Vries EGE, van der Vegt B, Schroder CP (2018) Tumor-associated macrophages in breast cancer: innocent bystander or important player? Cancer Treat Rev 70:178–189. https://doi.org/10.1016/j.ctrv.2018.08.010

    Article  CAS  PubMed  Google Scholar 

  37. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, Attardi LD, Regev A, Lander ES, Jacks T, Rinn JL (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142(3):409–419. https://doi.org/10.1016/j.cell.2010.06.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Inoue K, Fry EA, Frazier DP (2016) Transcription factors that interact with p53 and Mdm2. Int J Cancer 138(7):1577–1585. https://doi.org/10.1002/ijc.29663

    Article  CAS  PubMed  Google Scholar 

  39. Tang Z, Chen WY, Shimada M, Nguyen UT, Kim J, Sun XJ, Sengoku T, McGinty RK, Fernandez JP, Muir TW, Roeder RG (2013) SET1 and p300 act synergistically, through coupled histone modifications, in transcriptional activation by p53. Cell 154(2):297–310. https://doi.org/10.1016/j.cell.2013.06.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fan Y, Mao R, Yang J (2013) NF-kappaB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell 4(3):176–185. https://doi.org/10.1007/s13238-013-2084-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guo H, Jin D, Chen X (2014) Lipocalin 2 is a regulator of macrophage polarization and NF-kappaB/STAT3 pathway activation. Mol Endocrinol 28(10):1616–1628. https://doi.org/10.1210/me.2014-1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li L, Ng DS, Mah WC, Almeida FF, Rahmat SA, Rao VK, Leow SC, Laudisi F, Peh MT, Goh AM, Lim JS, Wright GD, Mortellaro A, Taneja R, Ginhoux F, Lee CG, Moore PK, Lane DP (2015) A unique role for p53 in the regulation of M2 macrophage polarization. Cell Death Differ 22(7):1081–1093. https://doi.org/10.1038/cdd.2014.212

    Article  CAS  PubMed  Google Scholar 

  43. Tang SS, Zheng BY, Xiong XD (2015) LincRNA-p21: Implications in Human Diseases. Int J Mol Sci 16(8):18732–18740. https://doi.org/10.3390/ijms160818732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Key University Science Research Project of Jiangsu Province (Grant No. 16KJA320005), the Social Development Foundation of Jiangsu Province (Grant No. BE2016716). The maternal and child project in Jiangsu Province (Grant No. F201511); Changzhou applied basic research project (CJ20180037).

Author information

Authors and Affiliations

Authors

Contributions

LZ, YT and FG did most experiment, prepared Figs. 1, 2, 3 and 4, BY and JL prepared Figs. 5 and 6, ZS and HX designed the project, ZS prepared the manuscript.

Corresponding author

Correspondence to Zhaoliang Su.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Tian, Y., Guo, F. et al. LincRNA-p21 knockdown reversed tumor-associated macrophages function by promoting MDM2 to antagonize* p53 activation and alleviate breast cancer development. Cancer Immunol Immunother 69, 835–846 (2020). https://doi.org/10.1007/s00262-020-02511-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02511-0

Keywords

Navigation