Skip to main content

Advertisement

Log in

CD200 mimetic aptamer PEG-M49 markedly increases the therapeutic effects of pegylated liposomal doxorubicin in a mouse model of metastatic breast carcinoma: an effect independent of CD200 receptor 1

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

We previously reported that CD200 overexpression in the host decreases progression and metastasis of the highly aggressive metastatic 4THM breast carcinoma. We have explored a possible synergistic interaction between the CD200 mimetic PEG-M49 and pegylated liposomal doxorubicin (Peg-Dox) in wild-type CD200 knockout (CD200−/−) and CD200 Receptor 1 knockout (CD200R1−/−) mice for the first time. A 4THM breast carcinoma model and three groups of BALB/c mice (wild type, CD200−/− and CD200R1−/−) were used. Five days after injection of tumor cells, mice were injected with Peg-Dox (ip, once a week) and PEG-M49 or a control aptamer (iv, every 3 days). Necropsies were performed either 12 (mid-point) or 24 (endpoint) days after injection and the extent of tumor growth, visceral metastasis and changes in the tumor-directed immune response were evaluated. PEG-M49 and Peg-Dox co-treatment induced complete tumor regression and loss of macroscopic lung metastasis in four out of seven WT mice. This synergistic anti-tumoral effect is thought to be due to Peg-M49-induced inhibition of Gr1 + CD11b + cells and Peg-Dox-induced increases in tumor-infiltrating CD8 + and CD8CD4 double-positive cells. Similar changes were observed in CD200R1−/− mice indicating that the primary effects of Peg-M49 are mediated by non-CD200R1 receptors. We also demonstrated for the first time that tumor growth, metastasis, and tumor infiltrating GR1 + CD11b + cells were markedly increased in CD200R1−/− mice, indicating an anti-inflammatory and protective role of CD200. CD200 mimetics might be a safe and effective immunomodulatory treatment in conjunction with classical chemotherapeutics for therapy of aggressive metastatic breast carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Apt:

Control aptamer

CD200−/− :

CD200 knockout mice

CD200R1:

CD200 receptor 1

CD200R1−/− :

CD200R1 knockout mice

DLN:

Draining lymph nodes

KATP:

ATP-sensitive potassium

LCs:

Leucocyte culture

Peg-Dox:

Pegylated liposomal doxorubicin

Peg-M49:

Pegylated conjugates of M49

UHN:

University Health Network in Toronto

WT:

Wild type

References

  1. Wright GJ, Cherwinski H, Foster-Cuevas M, Brooke G, Puklavec MJ, Bigler M et al (2003) Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J Immunol 171(6):3034–3046

    CAS  PubMed  Google Scholar 

  2. Wright GJ, Puklavec MJ, Willis AC, Hoek RM, Sedgwick JD, Brown MH et al (2000) Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity 13(2):233–242

    CAS  PubMed  Google Scholar 

  3. Erin N, Kale S, Tanriover G, Koksoy S, Duymus O, Korcum AF (2013) Differential characteristics of heart, liver, and brain metastatic subsets of murine breast carcinoma. Breast Cancer Res Treat 139(3):677–689

    CAS  PubMed  Google Scholar 

  4. Erin N, Podnos A, Tanriover G, Duymus O, Cote E, Khatri I et al (2015) Bidirectional effect of CD200 on breast cancer development and metastasis, with ultimate outcome determined by tumor aggressiveness and a cancer-induced inflammatory response. Oncogene 34(29):3860–3870

    CAS  PubMed  Google Scholar 

  5. Gorczynski RM, Chen Z, He W, Khatri I, Sun Y, Yu K et al (2009) Expression of a CD200 transgene is necessary for induction but not maintenance of tolerance to cardiac and skin allografts. J Immunol 183(3):1560–1568

    CAS  PubMed  Google Scholar 

  6. Erin N, Tanriover G, Curry A, Akman M, Duymus O, Gorczynski R (2018) CD200fc enhances anti-tumoral immune response and inhibits visceral metastasis of breast carcinoma. Oncotarget 9(27):19147–19158

    PubMed  PubMed Central  Google Scholar 

  7. Gorczynski R, Chen Z, Kai Y, Lee L, Wong S, Marsden PA (2004) CD200 is a ligand for all members of the CD200R family of immunoregulatory molecules. J Immunol 172(12):7744–7749

    CAS  PubMed  Google Scholar 

  8. Gorczynski R, Boudakov I, Khatri I (2008) A comparison of the biological properties of small molecular weight agonists and antagonists of CD200: CD200R interactions. Med Chem 4(6):624–631

    CAS  PubMed  Google Scholar 

  9. Gorczynski R, Boudakov I, Khatri I (2008) Peptides of CD200 modulate LPS-induced TNF-alpha induction and mortality in vivo. J Surg Res 145(1):87–96

    CAS  PubMed  Google Scholar 

  10. Kuwabara J, Umakoshi A, Abe N, Sumida Y, Ohsumi S, Usa E et al (2018) Truncated CD200 stimulates tumor immunity leading to fewer lung metastases in a novel Wistar rat metastasis model. Biochem Biophys Res Commun 496(2):542–548

    CAS  PubMed  Google Scholar 

  11. Gilboa E, McNamara J, Pastor F (2013) Use of oligonucleotide aptamer ligands to modulate the function of immune receptors. Clin Cancer Res 19(5):1054–1062

    CAS  PubMed  Google Scholar 

  12. Da PC, Blackshaw E, Missailidis S, Perkins AC (2012) PEGylation and biodistribution of an anti-MUC1 aptamer in MCF-7 tumor-bearing mice. Bioconjug Chem 23(7):1377–1381

    Google Scholar 

  13. Prodeus A, Cydzik M, Abdul-Wahid A, Huang E, Khatri I, Gorczynski R et al (2014) Agonistic CD200R1 DNA aptamers are potent immunosuppressants that prolong allogeneic skin graft survival. Mol Ther Nucleic Acids 3:e190

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 65(2):157–170

    CAS  PubMed  Google Scholar 

  15. Bandyopadhyay A, Wang L, Agyin J, Tang Y, Lin S, Yeh IT et al (2010) Doxorubicin in combination with a small TGFbeta inhibitor: a potential novel therapy for metastatic breast cancer in mouse models. PLoS One 5(4):e10365

    PubMed  PubMed Central  Google Scholar 

  16. Panis C, Lemos LG, Victorino VJ, Herrera AC, Campos FC, Colado Simao AN et al (2012) Immunological effects of taxol and adryamicin in breast cancer patients. Cancer Immunol Immunother 61(4):481–488

    CAS  PubMed  Google Scholar 

  17. Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N et al (2005) Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 202(12):1691–1701

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13(1):54–61

    CAS  PubMed  Google Scholar 

  19. Alizadeh D, Trad M, Hanke NT, Larmonier CB, Janikashvili N, Bonnotte B et al (2014) Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer. Cancer Res 74(1):104–118

    CAS  PubMed  Google Scholar 

  20. Erin N, Akdas BG, Harms JF, Clawson GA (2008) Vagotomy enhances experimental metastases of 4THMpc breast cancer cells and alters substance P level. Regul Pept 151(1–3):35–42

    CAS  PubMed  Google Scholar 

  21. Boudakov I, Liu J, Fan N, Gulay P, Wong K, Gorczynski RM (2007) Mice lacking CD200R1 show absence of suppression of lipopolysaccharide-induced tumor necrosis factor-alpha and mixed leukocyte culture responses by CD200. Transplantation 84(2):251–257

    CAS  PubMed  Google Scholar 

  22. Gorczynski RM, Chen Z, Diao J, Khatri I, Wong K, Yu K et al (2010) Breast cancer cell CD200 expression regulates immune response to EMT6 tumor cells in mice. Breast Cancer Res Treat 123(2):405–415

    CAS  PubMed  Google Scholar 

  23. Ryckman C, McColl SR, Vandal K et al (2003) Role of S100A8 and S100A9 in neutrophil recruitment in response to monosodium urate monohydrate crystals in the air-pouch model of acute gouty arthritis. Arthritis Rheum 48(8):2310–2320

    CAS  PubMed  Google Scholar 

  24. Liu Y, Kosaka A, Ikeura M, Kohanbash G, Fellows-Mayle W, Snyder LA et al (2013) Premetastatic soil and prevention of breast cancer brain metastasis. Neuro Oncol 15(7):891–903

    PubMed  PubMed Central  Google Scholar 

  25. Sinha P, Clements VK, Ostrand-Rosenberg S (2005) Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J Immunol 174(2):636–645

    CAS  PubMed  Google Scholar 

  26. Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M et al (2007) IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 117(12):3988–4002

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139(4):693–706

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Storci G, Sansone P, Mari S, D’Uva G, Tavolari S, Guarnieri T et al (2010) TNFalpha up-regulates SLUG via the NF-kappaB/HIF1alpha axis, which imparts breast cancer cells with a stem cell-like phenotype. J Cell Physiol 225(3):682–691

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Schmid MC, Avraamides CJ, Dippold HC, Franco I, Foubert P, Ellies LG et al (2011) Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3kgamma, a single convergent point promoting tumor inflammation and progression. Cancer Cell 19(6):715–727

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ryckman C, Vandal K, Rouleau P, Talbot M, Tessier PA (2003) Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J Immunol 170(6):3233–3242

    CAS  PubMed  Google Scholar 

  31. Gorczynski RM, Cattral MS, Chen Z, Hu J, Lei J, Min WP et al (1999) An immunoadhesin incorporating the molecule OX-2 is a potent immunosuppressant that prolongs allo- and xenograft survival. J Immunol 163(3):1654–1660

    CAS  PubMed  Google Scholar 

  32. Ren Y, Ye M, Chen S, Ding J (2016) CD200 inhibits inflammatory response by promoting KATP channel opening in microglia cells in Parkinson’s disease. Med Sci Monit 22:1733–1741

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ling MY, Ma ZY, Wang YY, Qi J, Liu L, Li L et al (2013) Up-regulated ATP-sensitive potassium channels play a role in increased inflammation and plaque vulnerability in macrophages. Atherosclerosis 226(2):348–355

    CAS  PubMed  Google Scholar 

  34. Chen Z, Yu K, Zhu F, Gorczynski R (2016) Over-expression of CD200 protects mice from dextran sodium sulfate induced colitis. PLoS One 11(2):e0146681

    PubMed  PubMed Central  Google Scholar 

  35. Meyer C, Sevko A, Ramacher M, Bazhin AV, Falk CS, Osen W et al (2011) Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proc Natl Acad Sci USA 108(41):17111–17116

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Desfrancois J, Moreau-Aubry A, Vignard V, Godet Y, Khammari A, Dreno B et al (2010) Double positive CD4CD8 alphabeta T cells: a new tumor-reactive population in human melanomas. PLoS One 5(1):e8437

    PubMed  PubMed Central  Google Scholar 

  37. Parel Y, Aurrand-Lions M, Scheja A, Dayer JM, Roosnek E, Chizzolini C (2007) Presence of CD4 + CD8 + double-positive T cells with very high interleukin-4 production potential in lesional skin of patients with systemic sclerosis. Arthritis Rheum 56(10):3459–3467

    CAS  PubMed  Google Scholar 

  38. Desfrancois J, Derre L, Corvaisier M, Le MB, Catros V, Jotereau F et al (2009) Increased frequency of nonconventional double positive CD4CD8 alphabeta T cells in human breast pleural effusions. Int J Cancer 125(2):374–380

    CAS  PubMed  Google Scholar 

  39. Nascimbeni M, Shin EC, Chiriboga L, Kleiner DE, Rehermann B (2004) Peripheral CD4(+)CD8(+) T cells are differentiated effector memory cells with antiviral functions. Blood 104(2):478–486

    CAS  PubMed  Google Scholar 

  40. Frahm MA, Picking RA, Kuruc JD, McGee KS, Gay CL, Eron JJ et al (2012) CD4 + CD8 + T cells represent a significant portion of the anti-HIV T cell response to acute HIV infection. J Immunol 188(9):4289–4296

    CAS  PubMed  Google Scholar 

  41. Suni MA, Ghanekar SA, Houck DW, Maecker HT, Wormsley SB, Picker LJ et al (2001) CD4(+)CD8(dim) T lymphocytes exhibit enhanced cytokine expression, proliferation and cytotoxic activity in response to HCMV and HIV-1 antigens. Eur J Immunol 31(8):2512–2520

    CAS  PubMed  Google Scholar 

  42. Hirao J, Sugita K (1998) Circulating CD4 + CD8 + T lymphocytes in patients with Kawasaki disease. Clin Exp Immunol 111(2):397–401

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by funds from Akdeniz University Research Units, Antalya, Turkey (Project no: TUA-2015-585); and from the Canadian Cancer Society (Grant to Reginald M. Gorczynski).

Author information

Authors and Affiliations

Authors

Contributions

NE planned and performed the experiments, and was involved in analysis of the results and writing of the manuscript; SD and GT performed histological studies and microscopic determination of metastasis as well as writing the related parts of the manuscript; AC participated in animal experiments and flow cytometry studies; ÖD determined the changes in cytokine levels and analyzed the results. JG and AP designed and provided Peg-M49; RMG planned and performed the experiments on animals, as well as participated in writing of the manuscript.

Corresponding author

Correspondence to Nuray Erin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and ethical standards

Ethical approval from the Toronto University Health Network (UHN) ethics committee, supervising studies involving animals, was given to Reginald M. Gorczynski (Protocol no. AUP1.15). All animal experimentations were performed following the guidelines of an accredited animal care committee (Toronto General Hospital Animal Care Committee, UHN).

Animal source

Wild-type (WT) female BALB/c mice were purchased from the Jackson Laboratories, Bar Harbor, ME.

Cell line authentication

The 4THM cell line, established by Nuray Erin, was derived from heart metastasis of the 4T1 cells. The 4THM cell line, kept in liquid nitrogen, forms primary tumors when injected into the mammary pad of BALB/c mice even after 50 passages.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1186 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erin, N., Dilmaç, S., Curry, A. et al. CD200 mimetic aptamer PEG-M49 markedly increases the therapeutic effects of pegylated liposomal doxorubicin in a mouse model of metastatic breast carcinoma: an effect independent of CD200 receptor 1. Cancer Immunol Immunother 69, 103–114 (2020). https://doi.org/10.1007/s00262-019-02444-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-019-02444-3

Keywords

Navigation