Skip to main content
Log in

Checkpoint blockade immunotherapy enhances the frequency and effector function of murine tumor-infiltrating T cells but does not alter TCRβ diversity

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Checkpoint blockade immunotherapy is now a first-line treatment option for patients with melanoma. Despite achieving objective responses in about half of patients, the exact immune mechanisms elicited and those required for therapeutic success have not been clearly identified. Insight into these mechanisms is key for improving outcomes in a broader range of cancer patients. We used a murine melanoma model to track responses by different subsets of tumor-infiltrating lymphocytes (TIL) during checkpoint blockade immunotherapy. Tumors from treated mice had increased frequencies of both CD4+ and CD8+ T cells, which also showed evidence of functional reinvigoration and elevated effector cytokine production after immunotherapy. We predicted that increased T cell numbers and function within tumors reflected either infiltration by new T cells or clonal expansion by a few high-affinity tumor-reactive T cells. To address this, we compared TIL diversity before and after immunotherapy by sequencing the complementarity determining region 3 (CDR3) of all T cell receptor beta (TCRβ) genes. While checkpoint blockade effectively slowed tumor progression and increased T cell frequencies, the diversity of intratumoral T cells remained stable. This was true when analyzing total T cells and when focusing on smaller subsets of effector CD4+ and CD8+ TIL as well as regulatory T cells. Our study suggests that checkpoint blockade immunotherapy does not broaden the T cell repertoire within murine melanoma tumors, but rather expands existing T cell populations and enhances effector capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ATCC:

American Type Culture Collection

BLAST:

Basic local alignment search tool

BLOSUM62:

BLOck substitution matrix 62

CDR3:

Complementarity determining region

DAB:

Diaminobenzidine

Eomes:

Eomesodermin

FIR:

Foxp3-IRES-mRFP

GzmB:

Granzyme B

ICB:

Immune checkpoint blockade

Iono:

Ionomycin

IRES:

Internal ribosome entry site

LAG-3:

Lymphocyte-activation gene-3

RFP:

Red fluorescent protein

T-bet:

T-box expressed in T cells

TbetZsG :

T-bet-ZsGreen

TH1:

T helper 1 cell

Treg:

T regulatory cell

References

  1. Nikolich-Zugich J, Slifka MK, Messaoudi I (2004) The many important facets of T-cell repertoire diversity. Nat Rev Immunol 4(2):123–132. https://doi.org/10.1038/nri1292

    Article  CAS  PubMed  Google Scholar 

  2. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wigginton JM, Gupta A, Sznol M (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369(2):122–133. https://doi.org/10.1056/NEJMoa1302369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sharma P, Allison JP (2015) Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161(2):205–214. https://doi.org/10.1016/j.cell.2015.03.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523(7559):231–235. https://doi.org/10.1038/nature14404

    Article  CAS  PubMed  Google Scholar 

  5. Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, Benci JL, Xu B, Dada H, Odorizzi PM, Herati RS, Mansfield KD, Patsch D, Amaravadi RK, Schuchter LM, Ishwaran H, Mick R, Pryma DA, Xu X, Feldman MD, Gangadhar TC, Hahn SM, Wherry EJ, Vonderheide RH, Minn AJ (2015) Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520(7547):373–377. https://doi.org/10.1038/nature14292

    Article  CAS  PubMed  Google Scholar 

  6. Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, Manne S, Xu W, Harmon S, Giles JR, Wenz B, Adamow M, Kuk D, Panageas KS, Carrera C, Wong P, Quagliarello F, Wubbenhorst B, D’Andrea K, Pauken KE, Herati RS, Staupe RP, Schenkel JM, McGettigan S, Kothari S, George SM, Vonderheide RH, Amaravadi RK, Karakousis GC, Schuchter LM, Xu X, Nathanson KL, Wolchok JD, Gangadhar TC, Wherry EJ (2017) T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature. https://doi.org/10.1038/nature22079

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pitt JM, Vetizou M, Daillere R, Roberti MP, Yamazaki T, Routy B, Lepage P, Boneca IG, Chamaillard M, Kroemer G, Zitvogel L (2016) Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity 44(6):1255–1269. https://doi.org/10.1016/j.immuni.2016.06.001

    Article  CAS  PubMed  Google Scholar 

  8. Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, Ly A, Lie WR, Hildebrand WH, Mardis ER, Linette GP (2015) Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348(6236):803–808. https://doi.org/10.1126/science.aaa3828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cha E, Klinger M, Hou Y, Cummings C, Ribas A, Faham M, Fong L (2014) Improved survival with T cell clonotype stability after anti-CTLA-4 treatment in cancer patients. Sci Transl Med 6(238):238ra270. https://doi.org/10.1126/scitranslmed.3008211

    Article  CAS  Google Scholar 

  10. Robert L, Tsoi J, Wang X, Emerson R, Homet B, Chodon T, Mok S, Huang RR, Cochran AJ, Comin-Anduix B, Koya RC, Graeber TG, Robins H, Ribas A (2014) CTLA4 blockade broadens the peripheral T-cell receptor repertoire. Clin Cancer Res 20(9):2424–2432. https://doi.org/10.1158/1078-0432.CCR-13-2648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, West AN, Carmona M, Kivork C, Seja E, Cherry G, Gutierrez AJ, Grogan TR, Mateus C, Tomasic G, Glaspy JA, Emerson RO, Robins H, Pierce RH, Elashoff DA, Robert C, Ribas A (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571. https://doi.org/10.1038/nature13954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Crosby EJ, Wei J, Yang XY, Lei G, Wang T, Liu CX, Agarwal P, Korman AJ, Morse MA, Gouin K, Knott SRV, Lyerly HK, Hartman ZC (2018) Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-negative breast tumors. Oncoimmunology 7(5):e1421891. https://doi.org/10.1080/2162402X.2017.1421891

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hosoi A, Takeda K, Nagaoka K, Iino T, Matsushita H, Ueha S, Aoki S, Matsushima K, Kubo M, Morikawa T, Kitaura K, Suzuki R, Kakimi K (2018) Increased diversity with reduced “diversity evenness” of tumor infiltrating T-cells for the successful cancer immunotherapy. Sci Rep 8(1):1058. https://doi.org/10.1038/s41598-018-19548-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Page DB, Yuan J, Redmond D, Wen YH, Durack JC, Emerson R, Solomon S, Dong Z, Wong P, Comstock C, Diab A, Sung J, Maybody M, Morris E, Brogi E, Morrow M, Sacchini V, Elemento O, Robins H, Patil S, Allison JP, Wolchok JD, Hudis C, Norton L, McArthur HL (2016) Deep sequencing of T-cell receptor DNA as a biomarker of clonally expanded TILs in breast cancer after immunotherapy. Cancer Immunol Res 4(10):835–844. https://doi.org/10.1158/2326-6066.CIR-16-0013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Curran MA, Montalvo W, Yagita H, Allison JP (2010) PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA 107(9):4275–4280. https://doi.org/10.1073/pnas.0915174107

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chao JL, Savage PA (2018) Unlocking the complexities of tumor-associated regulatory T cells. J Immunol 200(2):415–421. https://doi.org/10.4049/jimmunol.1701188

    Article  CAS  PubMed  Google Scholar 

  17. Berrien-Elliott MM, Yuan J, Swier LE, Jackson SR, Chen CL, Donlin MJ, Teague RM (2015) Checkpoint blockade immunotherapy relies on T-bet but not Eomes to induce effector function in tumor-infiltrating CD8+ T cells. Cancer Immunol Res 3(2):116–124. https://doi.org/10.1158/2326-6066.CIR-14-0159

    Article  CAS  PubMed  Google Scholar 

  18. Zhu J, Jankovic D, Oler AJ, Wei G, Sharma S, Hu G, Guo L, Yagi R, Yamane H, Punkosdy G, Feigenbaum L, Zhao K, Paul WE (2012) The transcription factor T-bet is induced by multiple pathways and prevents an endogenous Th2 cell program during Th1 cell responses. Immunity 37(4):660–673. https://doi.org/10.1016/j.immuni.2012.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wan YY, Flavell RA (2005) Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc Natl Acad Sci USA 102(14):5126–5131. https://doi.org/10.1073/pnas.0501701102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wolf KJ, Emerson RO, Pingel J, Buller RM, DiPaolo RJ (2016) Conventional and regulatory CD4+ T cells that share identical TCRs are derived from common clones. PLoS One 11(4):e0153705. https://doi.org/10.1371/journal.pone.0153705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, Brunak S, Lund O (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12(5):1007–1017. https://doi.org/10.1110/ps.0239403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pitot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso JF, Korman AJ, Parker SM, Agrawal S, Goldberg SM, Pardoll DM, Gupta A, Wigginton JM (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465. https://doi.org/10.1056/NEJMoa1200694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723. https://doi.org/10.1056/NEJMoa1003466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454. https://doi.org/10.1056/NEJMoa1200690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, Lao CD, Wagstaff J, Schadendorf D, Ferrucci PF, Smylie M, Dummer R, Hill A, Hogg D, Haanen J, Carlino MS, Bechter O, Maio M, Marquez-Rodas I, Guidoboni M, McArthur G, Lebbe C, Ascierto PA, Long GV, Cebon J, Sosman J, Postow MA, Callahan MK, Walker D, Rollin L, Bhore R, Hodi FS, Larkin J (2017) Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 377(14):1345–1356. https://doi.org/10.1056/NEJMoa1709684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Berrien-Elliott MM, Jackson SR, Meyer JM, Rouskey CJ, Nguyen TL, Yagita H, Greenberg PD, DiPaolo RJ, Teague RM (2013) Durable adoptive immunotherapy for leukemia produced by manipulation of multiple regulatory pathways of CD8+ T-cell tolerance. Cancer Res 73(2):605–616. https://doi.org/10.1158/0008-5472.CAN-12-2179

    Article  CAS  PubMed  Google Scholar 

  27. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Borresen-Dale AL, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjord JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinski M, Jager N, Jones DT, Jones D, Knappskog S, Kool M, Lakhani SR, Lopez-Otin C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson JV, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt AN, Valdes-Mas R, van Buuren MM, van’t Veer L, Vincent-Salomon A, Waddell N, Yates LR, Australian Pancreatic Cancer Genome I, Consortium IBC, Consortium IM-S, PedBrain I, Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pfister SM, Campbell PJ, Stratton MR (2013) Signatures of mutational processes in human cancer. Nature 500(7463):415–421. https://doi.org/10.1038/nature12477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Castle JC, Kreiter S, Diekmann J, Lower M, van de Roemer N, de Graaf J, Selmi A, Diken M, Boegel S, Paret C, Koslowski M, Kuhn AN, Britten CM, Huber C, Tureci O, Sahin U (2012) Exploiting the mutanome for tumor vaccination. Cancer Res 72(5):1081–1091. https://doi.org/10.1158/0008-5472.CAN-11-3722

    Article  CAS  PubMed  Google Scholar 

  29. Huang RY, Francois A, McGray AR, Miliotto A, Odunsi K (2017) Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology 6(1):e1249561. https://doi.org/10.1080/2162402X.2016.1249561

    Article  CAS  PubMed  Google Scholar 

  30. Hodi FS, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Cowey CL, Lao CD, Schadendorf D, Wagstaff J, Dummer R, Ferrucci PF, Smylie M, Hill A, Hogg D, Marquez-Rodas I, Jiang J, Rizzo J, Larkin J, Wolchok JD (2018) Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol 19(11):1480–1492. https://doi.org/10.1016/S1470-2045(18)30700-9

    Article  CAS  PubMed  Google Scholar 

  31. Benci JL, Xu B, Qiu Y, Wu TJ, Dada H, Twyman-Saint Victor C, Cucolo L, Lee DSM, Pauken KE, Huang AC, Gangadhar TC, Amaravadi RK, Schuchter LM, Feldman MD, Ishwaran H, Vonderheide RH, Maity A, Wherry EJ, Minn AJ (2016) Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167(6):1540e1512–1554e1512. https://doi.org/10.1016/j.cell.2016.11.022

    Article  CAS  Google Scholar 

  32. Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, Manne S, Xu W, Harmon S, Giles JR, Wenz B, Adamow M, Kuk D, Panageas KS, Carrera C, Wong P, Quagliarello F, Wubbenhorst B, D’Andrea K, Pauken KE, Herati RS, Staupe RP, Schenkel JM, McGettigan S, Kothari S, George SM, Vonderheide RH, Amaravadi RK, Karakousis GC, Schuchter LM, Xu X, Nathanson KL, Wolchok JD, Gangadhar TC, Wherry EJ (2017) T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545(7652):60–65. https://doi.org/10.1038/nature22079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Overwijk WW, Theoret MR, Finkelstein SE, Surman DR, de Jong LA, Vyth-Dreese FA, Dellemijn TA, Antony PA, Spiess PJ, Palmer DC, Heimann DM, Klebanoff CA, Yu Z, Hwang LN, Feigenbaum L, Kruisbeek AM, Rosenberg SA, Restifo NP (2003) Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 198(4):569–580. https://doi.org/10.1084/jem.20030590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rizzuto GA, Merghoub T, Hirschhorn-Cymerman D, Liu C, Lesokhin AM, Sahawneh D, Zhong H, Panageas KS, Perales MA, Altan-Bonnet G, Wolchok JD, Houghton AN (2009) Self-antigen-specific CD8+ T cell precursor frequency determines the quality of the antitumor immune response. J Exp Med 206(4):849–866. https://doi.org/10.1084/jem.20081382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Topalian SL, Sznol M, McDermott DF, Kluger HM, Carvajal RD, Sharfman WH, Brahmer JR, Lawrence DP, Atkins MB, Powderly JD, Leming PD, Lipson EJ, Puzanov I, Smith DC, Taube JM, Wigginton JM, Kollia GD, Gupta A, Pardoll DM, Sosman JA, Hodi FS (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 32(10):1020–1030. https://doi.org/10.1200/JCO.2013.53.0105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NAS, Andrews MC, Sharma P, Wang J, Wargo JA, Pe’er D, Allison JP (2017) Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170(6):1120e1117–1133e1117. https://doi.org/10.1016/j.cell.2017.07.024

    Article  CAS  Google Scholar 

  37. Oh DY, Cham J, Zhang L, Fong G, Kwek SS, Klinger M, Faham M, Fong L (2017) Immune toxicities elicted by CTLA-4 blockade in cancer patients are associated with early diversification of the T-cell repertoire. Cancer Res 77(6):1322–1330. https://doi.org/10.1158/0008-5472.CAN-16-2324

    Article  CAS  PubMed  Google Scholar 

  38. Postow MA, Manuel M, Wong P, Yuan J, Dong Z, Liu C, Perez S, Tanneau I, Noel M, Courtier A, Pasqual N, Wolchok JD (2015) Peripheral T cell receptor diversity is associated with clinical outcomes following ipilimumab treatment in metastatic melanoma. J Immunother Cancer 3:23. https://doi.org/10.1186/s40425-015-0070-4

    Article  PubMed  PubMed Central  Google Scholar 

  39. Carpenter SM, Nunes-Alves C, Booty MG, Way SS, Behar SM (2016) A higher activation threshold of memory CD8+ T cells has a fitness cost that is modified by TCR affinity during tuberculosis. PLoS Pathog 12(1):e1005380. https://doi.org/10.1371/journal.ppat.1005380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nunes-Alves C, Booty MG, Carpenter SM, Rothchild AC, Martin CJ, Desjardins D, Steblenko K, Kloverpris HN, Madansein R, Ramsuran D, Leslie A, Correia-Neves M, Behar SM (2015) Human and murine clonal CD8+ T cell expansions arise during tuberculosis because of TCR selection. PLoS Pathog 11(5):e1004849. https://doi.org/10.1371/journal.ppat.1004849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thomas N, Best K, Cinelli M, Reich-Zeliger S, Gal H, Shifrut E, Madi A, Friedman N, Shawe-Taylor J, Chain B (2014) Tracking global changes induced in the CD4 T-cell receptor repertoire by immunization with a complex antigen using short stretches of CDR3 protein sequence. Bioinformatics 30(22):3181–3188. https://doi.org/10.1093/bioinformatics/btu523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Sherri Koehm and Joy Eslick (Saint Louis University) for technical assistance with flow cytometry and cell sorting.

Funding

This work was supported by a grant from the Alvin J. Siteman National Cancer Institute Comprehensive Cancer Center and The Foundation for Barnes-Jewish Hospital (Grant no. P30 CA091842) to Ryan M. Teague.

Author information

Authors and Affiliations

Authors

Contributions

LMK helped develop methodology, performed all experiments, analyzed and interpreted data, and helped write the manuscript. RMT was the study supervisor, designed the study, and helped write the manuscript. KW and RJD assisted in translating and interpreting the TCR sequencing results as well as writing the manuscript. JZ performed the immunohistochemistry staining and analysis.

Corresponding author

Correspondence to Ryan M. Teague.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All mice were maintained under specific pathogen-free conditions and used in accordance with protocols established by the Institutional Animal Care and Use Committee of the Department of Comparative Medicine, Saint Louis University School of Medicine. All work with mice was performed according to protocol #2437 approved by the Animal Care and Use Program at Saint Louis University (Office of Laboratory Animal Welfare Assurance number D16-00141) which is fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALACI).

Animal source

TbetZsG original breeder mice were obtained from Taconic Farms, and the FIR mice were a gift from Daniel Hawiger’s laboratory (Saint Louis University).

Cell line authentication

The B16-F0 cell line was obtained commercially from and authenticated by American Type Culture Collection (ATCC) (Cat# CRL-6322). The cell line was free of mycoplasma, and correct morphology was confirmed by microscopy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuehm, L.M., Wolf, K., Zahour, J. et al. Checkpoint blockade immunotherapy enhances the frequency and effector function of murine tumor-infiltrating T cells but does not alter TCRβ diversity. Cancer Immunol Immunother 68, 1095–1106 (2019). https://doi.org/10.1007/s00262-019-02346-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-019-02346-4

Keywords

Navigation