Skip to main content

Advertisement

Log in

Reduction of myeloid-derived suppressor cells reinforces the anti-solid tumor effect of recipient leukocyte infusion in murine neuroblastoma-bearing allogeneic bone marrow chimeras

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Allogeneic hematopoietic stem cell transplantation is an emerging treatment option for solid tumors because of its capacity to elicit immune graft-versus-tumor effects. However, these are often limited and associated with GvHD. Adoptive recipient leukocyte infusion (RLI) was shown to enhance anti-tumor responses of allogeneic bone marrow transplantation in murine neuroblastoma (Neuro2A)-bearing chimeras. In contrast to the clinically used donor leukocyte infusion, the RLI anti-tumor effect—elicited by host-versus-graft lymphohematopoietic reactivity—does not cause GvHD; however, the tumor growth-inhibitory effect is incomplete, because overall survival is not prolonged. Here, we studied the anti-solid tumor mechanisms of RLI with the objective to improve its efficacy. Host-versus-graft reactivity following RLI was associated with a systemic cytokine storm, lymph node DC activation, and systemic expansion of host-derived IFN-γ-expressing CD4+ T cells and IFN-γ-and granzyme B-expressing CD8+ T cells, which acquired killing activity against Neuro2A and third-party tumor cells. The tumor showed up-regulation of MHC class I and a transient accumulation of IFN-γ-and granzyme B-expressing CD8+ T cells: the intra-tumor decline in cytotoxic CD8+ T cells coincided with a systemic—and to a lesser extent intra-tumoral—expansion of MDSC. In vivo MDSC depletion with 5-FU significantly improved the local tumor growth-inhibitory effect of RLI as well as overall survival. In conclusion, the RLI-induced alloreactivity gives rise to a host-derived cytotoxic T-cell anti-neuroblastoma response, but also drives an expansion of host-type MDSC that counteracts the anti-tumor effect. This finding identifies MDSC as a novel target to increase the effectiveness of RLI, and possibly other cancer immunotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AlloBMT:

Allogeneic bone marrow transplantation

AlloHSCT:

Allogeneic hematopoietic stem cell transplantation

APC:

Allophycocyanin

CBA:

Cytometric bead array

CCL2:

Chemokine (C-C motif) ligand 2

DLI:

Donor leukocyte infusion

FasL:

Fas ligand

GvHD:

Graft-versus-host disease

GvT:

Graft-versus-tumor

iNKT:

Invariant natural killer T cells

M-/G-MDSC:

Monocytic/granulocytic myeloid-derived suppressor cells

MHC-I:

MHC class I

MHC-II:

MHC class II

NO:

Nitric oxide

NOD/SCID:

Nonobese diabetic/severe combined immunodeficiency

RLI:

Recipient leukocyte infusion

Th1:

T helper 1 cells

Treg:

T regulatory cells

References

  1. Zahid MF, Ali N, Shaikh MU, Adil SN (2014) Outcome of allogeneic hematopoietic stem cell transplantation in patients with hematological malignancies. Int J Hematol Oncol Stem Cell Res 8:30–38

    PubMed  PubMed Central  Google Scholar 

  2. Demirer T, Barkholt L, Blaise D, Pedrazzoli P, Aglietta M, Carella AM et al (2008) Transplantation of allogeneic hematopoietic stem cells: an emerging treatment modality for solid tumors. Nat Clin Pract Oncol 5:256–267

    Article  CAS  PubMed  Google Scholar 

  3. Kanold J, Paillard C, Tchirkov A, Merlin E, Marabelle A, Lutz P et al (2008) Allogeneic or haploidentical HSCT for refractory or relapsed solid tumors in children: toward a neuroblastoma model. Bone Marrow Transplant 42(Suppl 2):S25–S30

    Article  PubMed  Google Scholar 

  4. Hale GA, Arora M, Ahn KW, He W, Camitta B, Bishop MR et al (2013) Allogeneic hematopoietic cell transplantation for neuroblastoma: the CIBMTR experience. Bone Marrow Transplant 48:1056–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ho VT, Soiffer RJ (2001) The history and future of T-cell depletion as graft-versus-host disease prophylaxis for allogeneic hematopoietic stem cell transplantation. Blood 98:3192–3204

    Article  CAS  PubMed  Google Scholar 

  6. Rager A, Porter DL (2011) Cellular therapy following allogeneic stem-cell transplantation. Ther Adv Hematol 2:409–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dey BR, McAfee S, Colby C, Cieply K, Caron M, Saidman S et al (2005) Anti-tumour response despite loss of donor chimaerism in patients treated with non-myeloablative conditioning and allogeneic stem cell transplantation. Br J Haematol 128:351–359

    Article  CAS  PubMed  Google Scholar 

  8. Rubio MT, Saito TI, Kattleman K, Zhao G, Buchli J, Sykes M (2005) Mechanisms of the antitumor responses and host-versus-graft reactions induced by recipient leukocyte infusions in mixed chimeras prepared with nonmyeloablative conditioning: a critical role for recipient CD4+ T cells and recipient leukocyte infusion-derived IFN-gamma-producing CD8+ T cells. J Immunol 175:665–676

    Article  CAS  PubMed  Google Scholar 

  9. Rubio MT, Zhao G, Buchli J, Chittenden M, Sykes M (2006) Role of indirect allo- and autoreactivity in anti-tumor responses induced by recipient leukocyte infusions (RLI) in mixed chimeras prepared with nonmyeloablative conditioning. Clin Immunol 120:33–44

    Article  CAS  PubMed  Google Scholar 

  10. Saito TI, Li HW, Sykes M (2010) Invariant NKT cells are required for antitumor responses induced by host-versus-graft responses. J Immunol 185:2099–2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. De Somer L, Sprangers B, Fevery S, Rutgeerts O, Lenaerts C, Boon L et al (2011) Recipient lymphocyte infusion in MHC-matched bone marrow chimeras induces a limited lymphohematopoietic host-versus-graft reactivity but a significant antileukemic effect mediated by CD8+ T cells and natural killer cells. Haematologica 96:424–431

    Article  PubMed  Google Scholar 

  12. Willems L, Fevery S, Sprangers B, Rutgeerts O, Lenaerts C, Ibrahimi A et al (2013) Recipient leukocyte infusion enhances the local and systemic graft-versus-neuroblastoma effect of allogeneic bone marrow transplantation in mice. Cancer Immunol Immunother 62:1733–1744

    Article  PubMed  Google Scholar 

  13. Morgenstern DA, Baruchel S, Irwin MS (2013) Current and future strategies for relapsed neuroblastoma: challenges on the road to precision therapy. J Pediatr Hematol Oncol 35:337–347

    Article  CAS  PubMed  Google Scholar 

  14. Bartholomew J, Washington T, Bergeron S, Nielson D, Saggio J, Quirk L (2016) Dinutuximab: a novel immunotherapy in the treatment of pediatric patients with high-risk neuroblastoma. J Pediatr Oncol Nurs 34:5–12

    Article  Google Scholar 

  15. Siapati KE, Barker S, Kinnon C, Michalski A, Anderson R, Brickell P et al (2003) Improved antitumour immunity in murine neuroblastoma using a combination of IL-2 and IL-12. Br J Cancer 88:1641–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sefrioui H, Billiau AD, Waer M (2000) Graft-versus-leukemia effect in minor antigen mismatched chimeras given delayed donor leucocyte infusion: immunoregulatory aspects and role of donor T and ASGM1-positive cells. Transplantation 70:348–353

    Article  CAS  PubMed  Google Scholar 

  17. De Somer L, Fevery S, Bullens DM, Rutgeerts O, Lenaerts C, Mathieu C et al (2010) Murine bone marrow chimeras developing autoimmunity after CTLA-4-blockade show an expansion of T regulatory cells with an activated cytokine profile. Immunol Lett 133:49–53

    Article  PubMed  Google Scholar 

  18. Billiau AD, Fevery S, Rutgeerts O, Landuyt W, Waer M (2003) Transient expansion of Mac1 + Ly6-G + Ly6-C + early myeloid cells with suppressor activity in spleens of murine radiation marrow chimeras: possible implications for the graft-versus-host and graft-versus-leukemia reactivity of donor lymphocyte infusions. Blood 102:740–748

    Article  CAS  PubMed  Google Scholar 

  19. Sprangers B, Van Wijmeersch B, Luyckx A, Sagaert X, Verbinnen B, Rutgeerts O et al (2011) Subclinical GvHD in non-irradiated F1 hybrids: severe lymphoid-tissue GvHD causing prolonged immune dysfunction. Bone Marrow Transplant 46:586–596

    Article  CAS  PubMed  Google Scholar 

  20. Luyckx A, Schouppe E, Rutgeerts O, Lenaerts C, Koks C, Fevery S et al (2012) Subset characterization of myeloid-derived suppressor cells arising during induction of BM chimerism in mice. Bone Marrow Transplant 47:985–992

    Article  CAS  PubMed  Google Scholar 

  21. Umansky V, Blattner C, Gebhardt C, Utikal J (2016) The role of myeloid-derived suppressor cells (MDSC) in cancer progression. Vaccines (Basel) 4:36

    Article  Google Scholar 

  22. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A et al (2010) 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting In enhanced T cell-dependent antitumor immunity. Cancer Res 70:3052–3061

    Article  CAS  PubMed  Google Scholar 

  24. Saito TI, Rubio MT, Sykes M (2006) Clinical relevance of recipient leukocyte infusion as antitumor therapy following nonmyeloablative allogeneic hematopoietic cell transplantation. Exp Hematol 34:1271–1277

    Article  CAS  PubMed  Google Scholar 

  25. Prigione I, Corrias MV, Airoldi I, Raffaghello L, Morandi F, Bocca P et al (2004) Immunogenicity of human neuroblastoma. Ann NY Acad Sci 1028:69–80

    Article  CAS  PubMed  Google Scholar 

  26. Alshaker HA, Matalka KZ (2011) IFN-γ, IL-17 and TGF-β involvement in shaping the tumor microenvironment: The significance of modulating such cytokines in treating malignant solid tumors. Cancer Cell Int 11:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM (2008) Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol 180:3132–3139

    Article  CAS  PubMed  Google Scholar 

  28. Longley DB, Harkin DP, Johnston PG (2003) 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338

    Article  CAS  PubMed  Google Scholar 

  29. Melero I, Rouzaut A, Motz GT, Coukos G (2014) T-cell and NK-cell infiltration into solid tumors: a key limiting factor for efficacious cancer immunotherapy. Cancer Discov 4:522–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Santilli G, Piotrowska I, Cantilena S, Chayka O, D’Alicarnasso M, Morgenstern DA et al (2013) Polyphenol E enhances the antitumor immune response in neuroblastoma by inactivating myeloid suppressor cells. Clin Cancer Res 19:1116–1125

    Article  CAS  PubMed  Google Scholar 

  31. Wang D, Yu Y, Haarberg K, Fu J, Kaosaard K, Nagaraj S et al (2013) Dynamic change and impact of myeloid-derived suppressor cells in allogeneic bone marrow transplantation in mice. Biol Blood Marrow Transplant 19:692–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yin J, Wang C, Huang M, Mao X, Zhou J, Zhang Y (2016) Circulating CD14(+) HLA-DR(-/low) myeloid-derived suppressor cells in leukemia patients with allogeneic hematopoietic stem cell transplantation: novel clinical potential strategies for the prevention and cellular therapy of graft-versus-host disease. Cancer Med 5:1654–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2007) Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 67:10019–10026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P et al (2002) Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 168:689–695

    Article  CAS  PubMed  Google Scholar 

  35. Bronte V (2009) Myeloid-derived suppressor cells in inflammation: Uncovering cell subsets with enhanced immunosuppressive functions. Eur J Immunol 39:2670–2672

    Article  CAS  PubMed  Google Scholar 

  36. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499–4506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D et al (2011) Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med 208:1949–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ugel S, De Sanctis F, Mandruzzato S, Bronte V (2015) Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. J Clin Invest 125:3365–3376

    Article  PubMed  PubMed Central  Google Scholar 

  39. Motallebnezhad M, Jadidi-Niaragh F, Qamsari ES, Bagheri S, Gharibi T, Yousefi M (2016) The immunobiology of myeloid-derived suppressor cells in cancer. Tumor Biol 37:1387–1406

    Article  CAS  Google Scholar 

  40. Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S (2007) Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 179:977–983

    Article  CAS  PubMed  Google Scholar 

  41. Marvel D, Gabrilovich DI (2015) Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Invest 125:3356–3364

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37:208–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Haabeth OA, Tveita AA, Fauskanger M, Schjesvold F, Lorvik KB, Hofgaard PO et al (2014) How do CD4+ T cells detect and eliminate tumor cells that either lack or express MHC class II molecules? Front Immunol 5:174

    Article  PubMed  PubMed Central  Google Scholar 

  44. Homma S, Komita H, Sagawa Y, Ohno T, Toda G (2005) Antitumour activity mediated by CD4+ cytotoxic T lymphocytes against MHC class II-negative mouse hepatocellular carcinoma induced by dendritic cell vaccine and interleukin-12. Immunology 115:451–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Akhmetzyanova I, Zelinskyy G, Schimmer S, Brandau S, Altenhoff P, Sparwasser T et al (2013) Tumor-specific CD4 + T cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory T cells. Cancer Immunol Immunother 62:257–271

    Article  CAS  PubMed  Google Scholar 

  46. Stewart TJ, Smyth MJ (2011) Improving cancer immunotherapy by targeting tumor-induced immune suppression. Cancer Metastasis Rev 30:125–140

    Article  CAS  PubMed  Google Scholar 

  47. Gajewski TF (2015) The next hurdle in cancer immunotherapy: overcoming the non-T-cell-inflamed tumor Microenvironment. Semin Oncol 42:663–671

    Article  PubMed  PubMed Central  Google Scholar 

  48. Farkona S, Diamandis EP, Blasutig IM (2016) Cancer immunotherapy: the beginning of the end of cancer? BMC Med 14:73

    Article  PubMed  PubMed Central  Google Scholar 

  49. Holmgaard RB, Zamarin D, Munn DH, Wolchok JD, Allison JP (2013) Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J Exp Med 210:1389–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stewart TJ, Liewehr DJ, Steinberg SM, Greeneltch KM, Abrams SI (2009) Modulating the expression of IFN regulatory factor 8 alters the protumorigenic behavior of CD11b+ Gr-1+ myeloid cells. J Immunol 183:117–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D et al (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115:3623–3633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ et al (2006) All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 66:9299–9307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Long AH, Highfill SL, Cui Y, Smith JP, Walker AJ, Ramakrishna S et al (2016) Reduction of MDSCs with all-trans retinoic acid improves CAR therapy efficacy for sarcomas. Cancer Immunol Res 4:869–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Olivia Hendrickx Research Fund (http://www.olivia.be) and the Fund for Scientific Research (FWO) Flanders (http://www.FWO.be) for supporting this work with research grants, and the Olivia Hendrickx Research Fund for supporting Isabelle Dierckx de Casterlé with a fellowship grant. The authors thank Stefaan W. Van Gool for the scientific advice on the tumor model, and Louis Boon for providing the anti-PD-1 (clone RMP1-14) mAb.

Funding

This work was supported by the Olivia Hendrickx Research Fund (http://www.olivia.be) and by the FWO Grants G054010N (of A. D. Billiau) and 12V9218N (of F. Poosti).

Author information

Authors and Affiliations

Authors

Contributions

IDC designed and performed the experiments; acquired, analyzed, and interpreted the data, and wrote the manuscript. OR and CL provided technical support in performing the experiments, and revised the manuscript. SF acquired flow cytometric data, participated in the interpretation of the data, and revised the manuscript. FP and SS provided help in immunofluorescence stainings on tumor tissue. MW, ADB, and BS conceived and supervised the study, contributed to the design of the experiments and interpretation of the data, and reviewed and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ben Sprangers.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the studies involving animals were ethically approved by the KU Leuven Animal Ethics Committee (Project approval number: P256/2014), and were in accordance with the ethical standards and guidelines of the KU Leuven. Animal care was in accordance with the KU Leuven guidelines for laboratory animals. All animals were obtained from external specialized companies (Envigo and Janvier Labs).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 8476 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dierckx de Casterlé, I., Fevery, S., Rutgeerts, O. et al. Reduction of myeloid-derived suppressor cells reinforces the anti-solid tumor effect of recipient leukocyte infusion in murine neuroblastoma-bearing allogeneic bone marrow chimeras. Cancer Immunol Immunother 67, 589–603 (2018). https://doi.org/10.1007/s00262-017-2114-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-2114-8

Keyword

Navigation