Skip to main content
Log in

The multi-faceted potential of CD38 antibody targeting in multiple myeloma

  • Opinion Paper
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

CD38, an adenine dinucleotide phosphate (ADP) ribose cyclase and a cyclic ADP ribose hydrolase, is widely expressed on the surface of multiple myeloma (MM) cells. It is known to play a pivotal role in the downstream pathways that mediate MM cell growth, signal transduction, and adhesion. The clinical use of CD38 monoclonal antibodies (MoAbs), such as daratumumab, either as monotherapy or in combination with other anti-MM agents, has produced impressive results in patients who have failed standard MM therapy. CD38 MoAbs exhibit several cytotoxic mechanisms on MM cells. In addition to the classical effector mechanisms associated with antibody therapy, CD38 MoAbs induce MM apoptosis and clonal T-cell expansion. Here, we summarize the results of some pivotal clinical studies using a human CD38 MoAb, daratumumab, in patients with MM, discuss the anti-MM effector mechanisms induced by CD38 MoAbs, and review the potential tumor antigens that may be suitable targets for immunotherapy of MM. Finally, we present a paradigm of immunotherapy for MM patients using CD38 MoAbs followed by GM-CSF and an immune checkpoint inhibitor in patients who have undergone high dose chemotherapy and autologous stem cell transplant. CD38 MoAbs have emerged as a novel and ultimately very promising immunotherapeutic agent for MM because of its ability to induce MM cytotoxicity through both arms of the adaptive immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ADCC:

Antibody-dependent cellular cytotoxicity

ADCP:

Antibody-dependent cellular phagocytosis

ADP:

Adenine dinucleotide phosphate

ADPR:

Adenine dinucleotide phosphate ribose

APC:

Antigen presenting cell

cADPR:

Cyclic adenine dinucleotide phosphate ribose

CDC:

Complement-dependent cytotoxicity

CDR:

Complementarity determining region

CTA:

Cancer-testis antigen

DC:

Dendritic cell

FcγR:

Fcγ receptor

FDA:

Food and drug administration

GM-CSF:

Granulocyte–macrophage colony stimulating factor

HLA:

Human leukocyte antigen

Id:

Idiotypic protein

MDSC:

Myeloid-derived suppressor cell

MM:

Multiple myeloma

MoAb:

Monoclonal antibody

NAADP:

Nicotinic acid adenine dinucleotide phosphate

NAD:

Nicotinamide adenine dinucleotide

NK:

Natural killer

PD1:

Programmed death 1

PD-L1:

Programmed death ligand 1

PFS:

Progression-free survival

PR:

Partial response

Rd:

Lenalidomide and dexamethasone

SCT:

Stem cell transplant

Treg :

T regulatory

Vd:

Bortizomib and dexamethasone

VH:

Variable region of the immunoglobulin heavy chain

References

  1. Palumbo A, Cavallo F, Gay F, Di Raimondo F, Yehuda DB, Petrucci MT, Pezzatti S, Caravita T, Cerrato C, Ribakovsky E, Genuardi M, Cafro A, Marcatti M, Catalano L, Offidani M, Carella AM, Zamagni E, Patriarca F, Musto P, Evangelista A, Ciccone G, Omedé P, Crippa C, Corradini P, Nagler A, Boccadoro M, Cavo M (2014) Autologous transplantation and maintenance therapy in multiple myeloma. N Engl J Med 371:895–905

    Article  PubMed  Google Scholar 

  2. Malavasi F, Funaro A, Roggero S, Horenstein A, Calosso L, Mehta K (1994) Human CD38: a glycoprotein in search of a function. Immunol Today 15:95–97

    Article  CAS  PubMed  Google Scholar 

  3. Howard M, Grimaldi JC, Bazan JF, Lund FE, Santos-Argumedo L, Parkhouse RM, Walseth TF, Lee HC (1993) Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 262:1056–1059

    Article  CAS  PubMed  Google Scholar 

  4. Muñoz P, Mittelbrunn M, de la Fuente H, Pérez-Martínez M, García-Pérez A, Ariza-Veguillas A, Malavasi F, Zubiaur M, Sánchez-Madrid F, Sancho J (2008) Antigen-induced clustering of surface CD38 and recruitment of intracellular CD38 to the immunologic synapse. Blood 111: 3653–3664.

    Article  Google Scholar 

  5. Guse AH, da Silva CP, Berg I, Skapenko AL, Weber K, Heyer P, Hohenegger M, Ashamu GA, Schulze-Koops H, Potter BV, Mayr GW (1999) Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 398:70–73

    Article  CAS  PubMed  Google Scholar 

  6. Gasser A, Bruhn S, Guse AH (2006) Second messenger function of nicotinic acid adenine dinucleotide phosphate revealed by an improved enzymatic cycling assay. J Biol Chem 281:16906–16913

    Article  CAS  PubMed  Google Scholar 

  7. Partida-Sánchez S, Cockayne DA, Monard S, Jacobson EL, Oppenheimer N, Garvy B, Kusser K, Goodrich S, Howard M, Harmsen A, Randall TD, Lund FE (2001) Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nat Med 7:1209–1216

    Article  PubMed  Google Scholar 

  8. van de Donk NW, Janmaat ML, Mutis T, Lammerts van Bueren JJ, Ahmadi T, Sasser AK, Lokhorst HM, Parren PW (2016) Monoclonal antibodies targeting CD38 in hematological malignancies and beyond. Immunol Rev 270:95–112

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lokhorst HM, Plesner T, Laubach JP, Nahi H, Gimsing P, Hansson M, Minnema MC, Lassen U, Krejcik J, Palumbo A, van de Donk NW, Ahmadi T, Khan I, Uhlar CM, Wang J, Sasser AK, Losic N, Lisby S, Basse L, Brun N, Richardson PG (2015) Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med 373:1207–1219

    Article  CAS  PubMed  Google Scholar 

  10. Lonial S, Weiss BM, Usmani SZ, Singhal S, Chari A, Bahlis NJ, Belch A, Krishnan A, Vescio RA, Mateos MV, Mazumder A, Orlowski RZ, Sutherland HJ, Bladé J, Scott EC, Oriol A, Berdeja J, Gharibo M, Stevens DA, LeBlanc R, Sebag M, Callander N, Jakubowiak A, White D, de la Rubia J, Richardson PG, Lisby S, Feng H, Uhlar CM, Khan I, Ahmadi T, Voorhees PM (2016) Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): an open-label, randomised, phase 2 trial. Lancet 387:1551–1560

    Article  CAS  PubMed  Google Scholar 

  11. Plesner T, Arkenau HT, Gimsing P, Krejcik J, Lemech C, Minnema MC, Lassen U, Laubach JP, Palumbo A, Lisby S, Basse L, Wang J, Sasser AK, Guckert ME, de Boer C, Khokhar NZ, Yeh H, Clemens PL, Ahmadi T, Lokhorst HM, Richardson PG (2016) Phase 1/2 study of daratumumab, lenalidomide, and dexamethasone for relapsed multiple myeloma. Blood 128:1821–1828

    Article  CAS  PubMed Central  Google Scholar 

  12. Dimopoulos MA, Oriol A, Nahi H, San-Miguel J, Bahlis NJ, Usmani SZ, Rabin N, Orlowski RZ, Komarnicki M, Suzuki K, Plesner T, Yoon SS, Ben Yehuda D, Richardson PG, Goldschmidt H, Reece D, Lisby S, Khokhar NZ, O’Rourke L, Chiu C, Qin X, Guckert M, Ahmadi T, Moreau P, POLLUX Investigators (2016) Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med 375:1319–1331

    Article  CAS  PubMed  Google Scholar 

  13. Palumbo A, Chanan-Khan A, Weisel K, Nooka AK, Masszi T, Beksac M, Spicka I, Hungria V, Munder M, Mateos MV, Mark TM, Qi M, Schecter J, Amin H, Qin X, Deraedt W, Ahmadi T, Spencer A, Sonneveld P (2016) CASTOR Investigators Daratumumab, bortezomib and dexamethasone for multiple myeloma. N Engl J Med 375:754–766

    Article  CAS  PubMed  Google Scholar 

  14. de Weers M, Tai YT, van der Veer MS, Bakker JM, Vink T, Jacobs DC, Oomen LA, Peipp M, Valerius T, Slootstra JW, Mutis T, Bleeker WK, Anderson KC, Lokhorst HM, van de Winkel JG, Parren PW (2011) Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol 186: 1840–1848

    Article  Google Scholar 

  15. Nijhof IS, Groen RW, Noort WA, van Kessel B, de Jong-Korlaar R, Bakker J, van Bueren JJ, Parren PW, Lokhorst HM, van de Donk NW, Martens AC, Mutis T (2015) Preclinical evidence for the therapeutic potential of CD38-targeted immuno-chemotherapy in multiple myeloma patients refractory to lenalidomide and bortezomib. Clin Cancer Res 21:2802–2810

    Article  CAS  PubMed  Google Scholar 

  16. Overdijk MB, Verploegen S, Bögels M, van Egmond M, Lammerts van Bueren JJ, Mutis T, Groen RW, Breij E, Martens AC, Bleeker WK, Parren PW (2015) Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. mAbs 7:311–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zheng Y, Cai Z, Wang S, Zhang X, Qian J, Hong S, Li H, Wang M, Yang J, Yi Q (2009) Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug–induced apoptosis. Blood 114:3625–3628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leidi M, Gotti E, Bologna L, Miranda E, Rimoldi M, Sica A, Roncalli M, Palumbo GA, Introna M, Golay J (2009) M2 macrophages phagocytose rituximab-opsonized leukemic targets more efficiently than M1 cells in vitro. J Immunol 182: 4415–4422

    Article  Google Scholar 

  19. Overdijk MB, Jansen JH, Nederend M, Lammerts van Bueren JJ, Groen RW, Parren PW, Leusen JH, Boross P (2016) The therapeutic CD38 monoclonal antibody daratumumab induces programmed cell death via Fcγ receptor-mediated cross-linking. J Immunol 197:807–813

    Article  CAS  PubMed  Google Scholar 

  20. Deckert J, Wetzel MC, Bartle LM, Skaletskaya A, Goldmacher VS, Vallée F, Zhou-Liu Q, Ferrari P, Pouzieux S, Lahoute C, Dumontet C, Plesa A, Chiron M, Lejeune P, Chittenden T, Park PU, Blanc V (2014) SAR650984, a novel humanized CD38-targeting antibody, demonstrates potent antitumor activity in models of multiple myeloma and other CD38+ hematologic malignancies. Clin Cancer Res 20:4574–4583

    Article  CAS  PubMed  Google Scholar 

  21. Davies FE, Raje N, Hideshima T, Lentzsch S, Young G, Tai YT, Lin B, Podar K, Gupta D, Chauhan D, Treon SP, Richardson PG, Schlossman RL, Morgan GJ, Muller GW, Stirling DI, Anderson KC (2001) Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 98:210–216

    Article  CAS  PubMed  Google Scholar 

  22. Hayashi T, Hideshima T, Akiyama M, Podar K, Yasui H, Raje N, Kumar S, Chauhan D, Treon SP, Richardson P, Anderson KC (2005) Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol 128:192–203

    Article  CAS  PubMed  Google Scholar 

  23. van der Veer MS, de Weers M, van Kessel B, Bakker JM, Wittebol S, Parren PW, Lokhorst HM, Mutis T (2011) Towards effective immunotherapy of myeloma: enhanced elimination of myeloma cells by combination of lenalidomide with the human CD38 monoclonal antibody daratumumab. Haematologica 96:284–290

    Article  PubMed  Google Scholar 

  24. Krejcik J, Casneuf T, Nijhof IS, Verbist B, Bald J, Plesner T, Syed K, Liu K, van de Donk NW, Weiss BM, Ahmadi T, Lokhorst HM, Mutis T, Sasser AK (2016) Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood 128:384–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Qu P, Wang LZ, Lin PC (2016) Expansion and functions of myeloid-derived suppressor cells in the tumor microenvironment. Cancer Lett 380:253–256

    Article  CAS  PubMed  Google Scholar 

  26. Lokhorst HM, Schattenberg A, Cornelissen JJ, van Oers MH, Fibbe W, Russell I, Donk NW, Verdonck LF (2000) Donor lymphocyte infusions for relapsed multiple myeloma after allogeneic stem-cell transplantation: predictive factors for response and long-term outcome. J Clin Oncol 18:3031–3037

    Article  CAS  PubMed  Google Scholar 

  27. Chiriva-Internati M, Wang Z, Bumm K, Xue Y, Hahn AB, Lim SH (2001) Sperm protein 17 (Sp17) in multiple myeloma: opportunity for myeloma-specific donor T cell infusion to enhance graft-versus-myeloma effect without increasing graft-versus-host disease risk. Eur J Immunol 31:2277–2283

    Article  CAS  PubMed  Google Scholar 

  28. Chiriva-Internati M, Wang Z, Salati E, Bumm K, Barlogie B, Lim SH (2002) Sperm protein 17 (Sp17) is a suitable target for immunotherapy of multiple myeloma. Blood 100:961–965

    Article  CAS  PubMed  Google Scholar 

  29. Lim SH, Badros A, Lue C, Barlogie B (2001) Distinct T-cell clonal expansion in the vicinity of tumor cells in plasmacytoma. Cancer 91:900–908

    Article  CAS  PubMed  Google Scholar 

  30. Brown RD, Spencer A, Ho PJ, Kennedy N, Kabani K, Yang S, Sze DM, Aklilu E, Gibson J, Joshua DE (2009) Prognostically significant cytotoxic T cell clones are stimulated after thalidomide therapy in patients with multiple myeloma. Leuk Lymphoma 50:1860–1864

    Article  CAS  PubMed  Google Scholar 

  31. Wen YJ, Ling M, Bailey-Wood R, Lim SH (1998) Id-pulsed adherent PBMC-derived dendritic cells prime immune system in multiple myeloma. Clin Cancer Res 4:957–962

    CAS  PubMed  Google Scholar 

  32. Lim SH, Bailey-Wood R (1999) Idiotypic protein-pulsed dendritic cell vaccination in multiple myeloma. Int J Cancer 83:215–222

    Article  CAS  PubMed  Google Scholar 

  33. Wen YJ, Ling M, Lim SH (1998) Immunogenicity and cross-reactivity with idiotypic IgA of VH CDR3 peptide in multiple myeloma. Br J Haematol 100:464–468

    Article  CAS  PubMed  Google Scholar 

  34. Batchu RB, Moreno AM, Szmania SM, Bennett G, Spagnoli GC, Ponnazhagan S, Barlogie B, Tricot G, van Rhee F (2005) Protein transduction of dendritic cells for NY-ESO-1-based immunotherapy of myeloma. Cancer Res 65: 10041–10049

    Article  Google Scholar 

  35. Jungbluth AA, Ely S, DiLiberto M, Niesvizky R, Williamson B, Frosina D, Chen YT, Bhardwaj N, Chen-Kiang S, Old LJ, Cho HJ (2005) The cancer-testis antigens CT7 (MAGE-C1) and MAGE-A3/6 are commonly expressed in multiple myeloma and correlate with plasma-cell proliferation. Blood 106:167–174

    Article  CAS  PubMed  Google Scholar 

  36. Lim SH, Wang Z, Chiriva-Internati M, Xue Y (2001) Sperm protein 17 is a novel cancer-testis antigen in multiple myeloma. Blood 97:1508–1510

    Article  CAS  PubMed  Google Scholar 

  37. Wang Z, Zhang J, Zhang Y, Lim SH (2006) SPAN-Xb expression in myeloma cells is dependent on promoter hypomethylation and can be upregulated pharmacologically. Int J Cancer 118:1436–1444

    Article  CAS  PubMed  Google Scholar 

  38. Zhang R, Wang Z, Liu H, Giles FJ, Lim SH (2003) Pattern of gene expression and immune responses to Semenogelin 1 in chronic hematologic malignancies. J Immunother 26:461–467

    Article  CAS  PubMed  Google Scholar 

  39. Wang Z, Zhang Y, Mandal A, Zhang J, Giles FJ, Herr JC, Lim SH (2004) The Spermatozoa Protein, SLLP1, is a Novel Cancer–Testis Antigen in Hematologic Malignancies. Clin Cancer Res 10:6544–6550

    Article  CAS  PubMed  Google Scholar 

  40. Li Z, Li W, Meklat F, Wang Z, Zhang J, Zhang Y, Lim SH (2007) A yeast two-hybrid system using Sp17 identified Ropporin as a novel cancer–testis antigen in hematologic malignancies. Int J Cancer 121:1507–1511

    Article  CAS  PubMed  Google Scholar 

  41. Guillaume T, Rubinstein DB, Symann M (1998) Immune reconstitution and immunotherapy after autologous hematopoietic stem cell transplantation. Blood 92:1471–1490

    CAS  PubMed  Google Scholar 

  42. Nair JR, Carlson LM, Koorella C, Rozanski CH, Byrne GE, Bergsagel PL, Shaughnessy JP Jr, Boise LH, Chanan-Khan A, Lee KP (2011) CD28 expressed on malignant plasma cells induces a prosurvival and immunosuppressive microenvironment. J Immunol 187:1243–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Inaba K, Steinman RM, Pack MW, Aya H, Inaba M, Sudo T, Wolpe S, Schuler G (1992) Identification of proliferating dendritic cell precursors in mouse blood. J Exp Med 175:1157–1167

    Article  CAS  PubMed  Google Scholar 

  44. Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179:1109–1118

    Article  CAS  PubMed  Google Scholar 

  45. Caux C, Vanbervliet B, Massacrier C, Dezutter-Dambuyant C, de Saint-Vis B, Jacquet C, Yoneda K, Imamura S, Schmitt D, Banchereau J (1996) CD34 hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+ TNF alpha. J Exp Med 184:695–706

    Article  CAS  PubMed  Google Scholar 

  46. Ahlers JD, Dunlop N, Alling DW, Nara PL, Berzofsky JA (1997) Cytokine-in-adjuvant steering of the immune response phenotype to HIV-1 vaccine constructs: granulocyte-macrophage colony-stimulating factor and TNF-alpha synergize with IL-12 to enhance induction of cytotoxic T lymphocytes. J Immunol 158:3847–3958

    Google Scholar 

  47. Wang Z, Zhang Y, Ramsahoye B, Bowen D, Lim SH (2004) Sp17 gene expression in tumor cells is regulated by promoter methylation. Br J Cancer 91:1597–1603

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang Y, Wang Z, Zhang J, Farmer B, Lim SH (2008) Semenogelin I expression in myeloma cells can be upregulated pharmacologically. Leuk Res 32:1889–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yousef S, Marvin J, Steinbach M, Langemo A, Kovacsovics T, Binder M, Kröger N, Luetkens T, Atanackovic D (2015) Immunomodulatory molecule PD-L1 is expressed on malignant plasma cells and myeloma-propagating pre-plasma cells in the bone marrow of multiple myeloma patients. Blood Cancer J 5:e285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, Hetuin D, Saudemont A, Quesnel B (2007) Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-{gamma} and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 110:296–304

    Article  CAS  PubMed  Google Scholar 

  51. Hallett WHD, Jing W, Drobyski WR, Johnson BD (2011) Immunosuppressive effects of multiple myeloma are overcome by PD-L1 blockade. Biol Blood Marrow Transplant 17:1133–1145

    Article  CAS  PubMed  Google Scholar 

  52. Tamura H, Ishibashi M, Yamashita T, Tanosaki S, Okuyama N, Kondo A, Hyodo H, Shinya E, Takahashi H, Dong H, Tamada K, Chen L, Dan K, Ogata K (2013) Marrow stromal cells induce B7-H1 expression on myeloma cells, generating aggressive characteristics in multiple myeloma. Leukemia 27:464–472

    Article  CAS  PubMed  Google Scholar 

  53. Paiva B, Azpilikueta A, Puig N, Ocio EM, Sharma R, Oyajobi BO, Labiano S, San-Segundo L, Rodriguez A, Aires-Mejia I, Rodriguez I, Escalante F, de Coca AG, Barez A, San Miguel JF, Melero I (2015) PD-L1/PD-1 presence in the tumor microenvironment and activity of PD-1 blockade in multiple myeloma. Leukemia 29:2110–2113

    Article  CAS  PubMed  Google Scholar 

  54. Kearl TJ, Jing W, Gershan JA, Johnson BD (2013) PD-1/PD-L1 Blockade after transient lymphodepletion to treat myeloma. J Immunol 190:5620–5628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zelle-Rieser C, Thangavadivel S, Biedermann R, Brunner A, Stoitzner P, Willenbacher E, Greil R, Jöhrer K (2016) T cells in multiple myeloma display features of exhaustion and senescence at the tumor site. J Hematol Oncol 9:116

    Article  PubMed  PubMed Central  Google Scholar 

  56. Suen H, Brown R, Yang S, Ho PJ, Gibson J, Joshua D (2015) The failure of immune checkpoint blockade in multiple myeloma with PD-1 inhibitors in a phase I study. Leukemia 29:1621–2622

    Article  CAS  PubMed  Google Scholar 

  57. Lesokhin AM, Ansell SM, Armand P, Scott EC, Halwani A, Gutierrez M, Millenson MM, Cohen AD, Schuster SJ, Lebovic D, Dhodapkar M, Avigan D, Chapuy B, Ligon AH, Freeman GJ, Rodig SJ, Cattry D, Zhu L, Grosso JF, Bradley Garelik MB, Shipp MA, Borrello I, Timmerman J (2016) Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol 34:2698–2704

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seah H. Lim.

Ethics declarations

Conflict of interest

All authors confirm that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shallis, R.M., Terry, C.M. & Lim, S.H. The multi-faceted potential of CD38 antibody targeting in multiple myeloma. Cancer Immunol Immunother 66, 697–703 (2017). https://doi.org/10.1007/s00262-017-1990-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-1990-2

Keywords

Navigation