Skip to main content

Advertisement

Log in

Adoptive immunotherapy of cancer utilizing genetically engineered lymphocytes

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

It is becoming increasingly clear that adoptive immunotherapy with genetically engineered T cells has the potential to control and even cure cancer in some patients. On the other hand, severe adverse events associated with efficacy have frequently been reported in clinical trials. Current and near-future challenges for the development of adoptive immunotherapy of cancer using genetically engineered T cells include minimization and prediction of adverse events; identification of new and effective targets, including patient-specific mutations; improvement in T cell functionality, persistence, and memory formation capacity; and utilization of allogeneic or cell line-based T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALL:

Acute lymphoid leukemia

CAR:

Chimeric antigen receptor

CTL:

Cytotoxic T lymphocytes

CR:

Complete response

DLI:

Donor lymphocyte infusion

GvHD:

Graft-versus-host disease

GvL:

Graft versus leukemia

HSCT:

Hematopoietic stem cell transplantation

LAK/CIK:

Lymphokine-/cytokine-activated killer

mAb:

Monoclonal antibody

PR:

Partial response

RECIST:

Response Evaluation Criteria in Solid Tumors

siRNA:

Short inhibitory RNA

TCR:

T cell receptor

TIL:

Tumor infiltrate lymphocytes

VLA:

Very late antigen

References

  1. Jenq RR, van den Brink MR (2010) Allogeneic haematopoietic stem cell transplantation: individualized stem cell and immune therapy of cancer. Nat Rev Cancer 10(3):213–221

    Article  CAS  PubMed  Google Scholar 

  2. Blazar BR, Murphy WJ (2012) Advances in graft-versus-host disease biology and therapy. Nat Rev Immunol 12(6):443–458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Rosenberg SA, Lotze MT, Yang JC et al (1993) Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J Natl Cancer Inst 85(8):622–632

    Article  CAS  PubMed  Google Scholar 

  4. Boon T, Coulie PG, van den Eynde BJ, van den Brugen PV (2006) Human T cell responses against melanoma. Annu Rev Immunol 24:175–208

    Article  CAS  PubMed  Google Scholar 

  5. Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12:269–281

    Article  CAS  PubMed  Google Scholar 

  6. Rosenberg SA (2011) Cell transfer immunotherapy for metastatic solid cancer-what clinicians need to know. Nat Rev Clin Oncol 8:577–585

    Article  CAS  PubMed  Google Scholar 

  7. Kalos M, June CH (2013) Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity 39:49–60

    Article  CAS  PubMed  Google Scholar 

  8. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS et al (2009) Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114:535–546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Robbins PF, Norgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME et al (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29:917–924

    Article  PubMed Central  PubMed  Google Scholar 

  10. Maude SL, Frey N, Saw PA, Aplenc R, Barrett DM, Bunin NJ et al (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. New Engl J Med 371:1507–1517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA et al (2015) T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385(9967):517–528

    Article  CAS  PubMed  Google Scholar 

  12. Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M et al (2015) Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 33(6):540–549

    Article  CAS  PubMed  Google Scholar 

  13. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA et al (2011) T cell targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 19(3):620–626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z et al (2013) Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 36(2):133–151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Linette GP, Stadmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L et al (2013) Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122(6):863–871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C, Gartner J et al (2013) Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 19(6):747–752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Tran E, Turcotte S, Gros A, Robbins PF, Lu YC, Dudley ME et al (2014) Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344(6184):641–645

    Article  CAS  PubMed  Google Scholar 

  18. Matsushita H, Vesely MD, Koboldt DC, Rickert CG, Uppaluri R, Magrini VJ et al (2012) Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482(7385):400–404

    Article  CAS  PubMed  Google Scholar 

  19. Castle JC, Kreiter S, Diekmann J, Löwer M, van de Roemer N, de Graaf J et al (2012) Exploiting the mutanome for tumor vaccination. Cancer Res 72(5):1081–1091

    Article  CAS  PubMed  Google Scholar 

  20. Shirakura Y, Mizuno Y, Wang L, Imai N, Amaike C, Sato E et al (2012) T-cell receptor gene therapy targeting melanoma-associated antigen-A4 inhibits human tumor growth in non-obese diabetic/SCID/gcnull mice. Cancer Sci 103(1):17–25

    Article  CAS  PubMed  Google Scholar 

  21. Kageyama S, Ikeda H, Miyahara Y, Imai N, Ishihara M, Saito K et al (2015) Adoptive transfer of MAGE-A4 T-cell receptor gene-transduced lymphocytes in patients with recurrent esophageal cancer. Clin Cancer Res 21(10):2268–2277

    Article  CAS  PubMed  Google Scholar 

  22. Hosoi H, Ikeda H, Imai N, Amaike C, Wang L, Orito Y et al (2014) Stimulation through very late antigen-4 and -5 improves the multifunctionality and memory formation of CD8+ T cells. Eur J Immunol 44:1747–1758

    Article  CAS  PubMed  Google Scholar 

  23. Bendle GM, Linnemann C, Hooijkaas AI, Bies L, de Witte MA, Jorritsma A et al (2010) Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat Med 16(5):565–570

    Article  CAS  PubMed  Google Scholar 

  24. Okamoto S, Mineno J, Ikeda H, Fujiwara H, Yasukawa M, Shiku H et al (2009) Improved expression and reactivity of transduced tumor-specific TCRs in human lymphocytes by silencing of endogenous TCR. Cancer Res 69(23):9003–9011

    Article  CAS  PubMed  Google Scholar 

  25. Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12(4):269–281

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Project for Development of Innovative Research on Cancer Therapeutics (P-DIRECT); a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan; a Grant-in-Aid for Scientific Research from the Ministry of Health, Labour, and Welfare of Japan, and Japan Agency for Medical Research and Development.

Conflict of interest

Hiroaki Ikeda and Hiroshi Shiku are provided with research funding from Takara Bio Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Ikeda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeda, H., Shiku, H. Adoptive immunotherapy of cancer utilizing genetically engineered lymphocytes. Cancer Immunol Immunother 64, 903–909 (2015). https://doi.org/10.1007/s00262-015-1718-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1718-0

Keywords

Navigation