Skip to main content

Advertisement

Log in

Impairment of lymphocyte function following yttrium-90 DOTATOC therapy

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The radiolabeled somatostatin analogue, yttrium-90 DOTA-d-Phe(1)-Tyr(3)-octreotide (DOTATOC), is currently applied to treat advanced somatostatin receptor-positive tumors, e.g., neuroendocrine tumors of the pancreas, lung or gut. However, effects of this treatment on antimicrobial immune responses are not yet defined. In 20 patients treated with DOTATOC, cellular in vitro immune function was determined. Their antimicrobial lymphocyte responses were assessed by lymphocyte transformation test and enzyme-linked immunospot—measuring lymphocyte proliferation and on a single cell level production of pro- and anti-inflammatory cytokines (interferon-γ and interleukin-10)—prior to therapy, at day 1, day 7 and day 90 post-therapy. Proliferative lymphocyte responses and interferon-γ production after in vitro stimulation with microbial antigens were non-significantly suppressed at day 1 and significantly (p < 0.05) at day 7 versus pre-therapy. In vitro immune responses did not fully recover until day 90. In contrast, at day 1 interleukin-10 production was significantly (p < 0.05) increased. Taken together, we observed a decrease in pro-inflammatory immune responses after DOTATOC therapy. Patients with versus without bone metastases displayed significantly (p < 0.05) lower cellular immune responses toward several microbial antigens. Progressive disease and higher tumor burden could also be defined as factors associated with impaired immune function. Spearman correlation analysis indicated that cellular in vitro immunity was positively correlated with kidney function; better kidney function led to stronger immune responses. In conclusion, DOTATOC therapy caused a decrease in in vitro immune responses against microorganisms. The clinical impact needs to be evaluated in further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Cpm:

Counts per minute

DOTATOC:

DOTA-d-Phe(1)-Tyr(3)-octreotide

DTPA:

Diethylene-triamine-pentaacetate

ELISpot:

Enzyme-linked immunospot

68Ga:

Gallium-68

IFN:

Interferon

IL:

Interleukin

LTT:

Lymphocyte transformation test

OKT3:

Anti-CD3 monoclonal antibody

PBMCs:

Peripheral blood mononuclear cells

PET/CT:

Positron emission tomography together with computed tomography

90Sr:

Strontium-90

90Y:

Yttrium-90

References

  1. Perico ME, Chinol M, Nacca A, Luison E, Paganelli G, Canevari S (2001) The humoral immune response to macrocyclic chelating agent DOTA depends on the carrier molecule. J Nucl Med 42(11):1697–1703

    CAS  PubMed  Google Scholar 

  2. Harrison A, Walker CA, Parker D et al (1991) The in vivo release of 90Y from cyclic and acyclic ligand-antibody conjugates. Int J Rad Appl Instrum B 18(5):469–476

    Article  CAS  PubMed  Google Scholar 

  3. Kozak RW, Raubitschek A, Mirzadeh S, Brechbiel MW, Junghans RP, Gansow OA, Waldmann TA (1989) Nature of the bifunctional chelating agent used for radioimmunotherapy with yttrium-90 monoclonal antibodies: critical factors in determining in vivo survival and organ toxicity. Cancer Res 49(10):2639–2644

    CAS  PubMed  Google Scholar 

  4. Knox SJ, Goris ML, Trisler K et al (1996) Yttrium-90-labeled anti-CD20 monoclonal antibody therapy of recurrent B-cell lymphoma. Clin Cancer Res 2(3):457–470

    CAS  PubMed  Google Scholar 

  5. Otte A, Mueller-Brand J, Dellas S, Nitzsche EU, Herrmann R, Maecke HR (1998) Yttrium-90-labelled somatostatin-analogue for cancer treatment. Lancet 351(9100):417–418

    Article  CAS  PubMed  Google Scholar 

  6. Rufini V, Calcagni ML, Baum RP (2006) Imaging of neuroendocrine tumors. Semin Nucl Med 36(3):228–247. doi:10.1053/j.semnuclmed.2006.03.007

    Article  PubMed  Google Scholar 

  7. Barsegian V, Müller SP, Horn PA, Bockisch A, Lindemann M (2011) Lymphocyte function following radioiodine therapy in patients with thyroid carcinoma. Nuklearmedizin 50(5):195–203. doi:10.3413/nukmed-04241108

    Article  CAS  PubMed  Google Scholar 

  8. Anderson RE, Warner NL (1976) Ionizing radiation and the immune response. Adv Immunol 24:215–335

    CAS  PubMed  Google Scholar 

  9. Dehos G, Hinz G, Schwarz E-R (1986) Changes in number and function of the lymphocyte populations as a biological indicator for ionizing radiation. In: Kaul A, Dehos A, Bögl W, Hing G, Kossel F, Schwarz E-R, Stamm A, Stephan G (eds) Biological indicators for radiation dose assessment. MMV, München, pp 298–301

    Google Scholar 

  10. Guedeney G, Grunwald D, Malarbet JL, Doloy MT (1988) Time dependence of chromosomal aberrations induced in human and monkey lymphocytes by acute and fractionated exposure to 60Co. Radiat Res 116(2):254–262

    Article  CAS  PubMed  Google Scholar 

  11. Anderson RE, Lefkovits I (1980) Effects of irradiation on the in vitro immune response. Exp Cell Biol 48(4):255–278

    CAS  PubMed  Google Scholar 

  12. Belka C, Ottinger H, Kreuzfelder E, Weinmann M, Lindemann M, Lepple-Wienhues A, Budach W, Grosse-Wilde H, Bamberg M (1999) Impact of localized radiotherapy on blood immune cells counts and function in humans. Radiother Oncol 50(2):199–204

    Article  CAS  PubMed  Google Scholar 

  13. Breitz H (2002) Dosimetry in a myeloablative setting. Cancer Biother Radiopharm 17(1):119–128. doi:10.1089/10849780252824136

    Article  CAS  PubMed  Google Scholar 

  14. Marincek N, Jorg AC, Brunner P et al (2013) Somatostatin-based radiotherapy with [90Y-DOTA]-TOC in neuroendocrine tumors: long-term outcome of a phase I dose escalation study. J Transl Med 11:17. doi:10.1186/1479-5876-11-17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. IRCP (1984) Publication 51. Nonstochastic effects of ionizing radiation. Pergamon Press, Oxford

    Google Scholar 

  16. Coleman CN, Blakely WF, Fike JR et al (2003) Molecular and cellular biology of moderate-dose (1–10 Gy) radiation and potential mechanisms of radiation protection: report of a workshop at Bethesda, Maryland, December 17–18, 2001. Radiat Res 159(6):812–834

    Article  CAS  PubMed  Google Scholar 

  17. Russell CD, Bischoff PG, Kontzen FN, Rowell KL, Yester MV, Lloyd LK, Tauxe WN, Dubovsky EV (1985) Measurement of glomerular filtration rate: single injection plasma clearance method without urine collection. J Nucl Med 26(11):1243–1247

    CAS  PubMed  Google Scholar 

  18. Lindemann M, Witzke O, Winterhagen T et al (2004) T-cell function after interleukin-2 therapy in HIV-infected patients is correlated with serum cortisol concentrations. AIDS 18(15):2001–2007

    Article  CAS  PubMed  Google Scholar 

  19. IRCP (1987) Publication 53 (with Addenda). Radiation dose to patients from radiopharmaceuticals. A report of a Task Group of Committee 2 of the International Commission on Radiological Protection. Ann ICRP 18 (1–4): 1–377

  20. IRCP (1998) Publication 80: radiation dose to patients from radiopharmaceuticals (addendum 2 to ICRP publication 53). Ann ICRP 28(3):1–126

    Article  Google Scholar 

  21. Förster GJ, Engelbach MJ, Brockmann JJ, Reber HJ, Buchholz HG, Macke HR, Rosch FR, Herzog HR, Bartenstein PR (2001) Preliminary data on biodistribution and dosimetry for therapy planning of somatostatin receptor positive tumours: comparison of (86)Y-DOTATOC and (111)In-DTPA-octreotide. Eur J Nucl Med 28(12):1743–1750. doi:10.1007/s002590100628

    Article  PubMed  Google Scholar 

  22. Hänscheid H, Lassmann M, Luster M et al (2006) Iodine biokinetics and dosimetry in radioiodine therapy of thyroid cancer: procedures and results of a prospective international controlled study of ablation after rhTSH or hormone withdrawal. J Nucl Med 47(4):648–654

    PubMed  Google Scholar 

  23. Dale RG (1996) Dose-rate effects in targeted radiotherapy. Phys Med Biol 41(10):1871–1884

    Article  CAS  PubMed  Google Scholar 

  24. Vrisekoop N, den Braber I, de Boer AB et al (2008) Sparse production but preferential incorporation of recently produced naive T cells in the human peripheral pool. Proc Natl Acad Sci USA 105(16):6115–6120. doi:10.1073/pnas.0709713105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Lindemann M, Belger P, Ottinger HD, Beelen DW, Grosse-Wilde H (2005) Long-term follow-up of cellular in vitro immunity after allogeneic peripheral blood stem cell versus bone marrow transplantation. Tissue Antigens 66(5):480 [Abstract]

    Google Scholar 

  26. Carr BI, Metes DM (2012) Peripheral blood lymphocyte depletion after hepatic arterial 90Yttrium microsphere therapy for hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 82(3):1179–1184. doi:10.1016/j.ijrobp.2010.10.042

    Article  PubMed  Google Scholar 

  27. Stevenson AF, Daculsi R, Monig H (1982) Haematological studies on 90Sr–90Y-toxicity: II. Femoral CFU-s kinetics and mitogen response of spleen cells. Radiat Environ Biophys 20(4):275–287

    Article  CAS  PubMed  Google Scholar 

  28. Birkeland SA (1976) The immunosuppressive effect of extracorporeal irradiation of the blood using a portable 90Sr–90Y source and small transit doses. Scand J Immunol 5(4):323–329

    Article  CAS  PubMed  Google Scholar 

  29. Lindemann M, Rebmann V, Ottinger HD, Schmolke K, Kreuzfelder E, Grosse-Wilde H (2004) rhG-CSF effect on mixed lymphocyte cultures and circulating soluble HLA antigen levels in volunteer stem cell donors. Exp Hematol 32(11):1103–1109. doi:10.1016/j.exphem.2004.07.025

    Article  CAS  PubMed  Google Scholar 

  30. Ugurel S, Lindemann M, Schadendorf D, Grosse-Wilde H (2004) Altered surface expression patterns of circulating monocytes in cancer patients: impaired capacity of T-cell stimulation? Cancer Immunol Immunother 53(11):1051

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This article is a partial fulfillment of requirements for the doctor’s degree at the Medical Faculty, University of Essen, Germany, for Mr. C. Hueben.

Ethical standards

All patients provided written informed consent prior to their inclusion in the study. The study was approved by the institutional review board and carried out in accordance with the Helsinki Declaration of 1964, as revised in 2000.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Lindemann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barsegian, V., Hueben, C., Mueller, S.P. et al. Impairment of lymphocyte function following yttrium-90 DOTATOC therapy. Cancer Immunol Immunother 64, 755–764 (2015). https://doi.org/10.1007/s00262-015-1687-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1687-3

Keywords

Navigation