Skip to main content

Advertisement

Log in

The anti-lymphoma activities of anti-CD137 monoclonal antibodies are enhanced in FcγRIII−/− mice

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Agonistic monoclonal antibodies (mAbs) directed against the co-signaling molecule CD137 (4-1BB) elicit potent anti-tumor immunity in mice. This anti-tumor immunity has traditionally been thought to result from the ability of the Fab portion of anti-CD137 to function as an analog for CD137L. Although binding of CD137 by anti-CD137 mAbs has the potential to cross-link the Fc fragments, enabling Fc engagement of low to moderate affinity Fc gamma receptors (FcγR), the relative import of such Fc–FcγR interactions in mediating anti-CD137 associated anti-tumor immunity is unknown. We studied the ability of a rat anti-mouse CD137 mAb (2A) to mediate the anti-tumor response against the EL4E7 lymphoma in WT and FcγR−/− strains. 2A-treated FcRγ−/− mice had improved anti-tumor immunity against EL4E7, which could be completely recapitulated in FcγRIII−/− animals. These improved anti-tumor responses were associated with increased splenic CD8β T cell and dendritic cell (DC) populations. Furthermore, there was an increase in the number of DCs expressing high levels of the CD40, CD80, and CD86 molecules that are associated with more effective antigen presentation. Our results demonstrate an unexpected inhibitory role for FcγRIII in the anti-tumor function of anti-CD137 and underscore the need to consider antibody isotype when engineering therapeutic mAbs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2A:

Rat anti-mouse CD137 mAb

ADCC:

Antibody-dependent cellular cytotoxicity

CTLA-4:

Cytotoxic T-lymphocyte antigen 4

DC:

Dendritic cell

FcRγ:

Fc common γ-chain

FcγR:

Fc gamma receptor

GITR:

Glucocorticoid-induced TNFR-related protein

ITAM:

Immune receptor tyrosine-based activating motif

ITIM:

Immune receptor tyrosine-based inhibitory motif

MHCII:

Major histocompatibility II

mAbs:

Monoclonal antibodies

NK:

Natural killer

Tregs:

T regulatory cells

WT:

Wild type

References

  1. Wang C, Lin GHY, McPherson AJ, Watts TH (2009) Immune regulation by 4-1BB and 4-1BBL: complexities and challenges. Immunol Rev 229:192–215. doi:10.1111/j.1600-065X.2009.00765

    Article  CAS  PubMed  Google Scholar 

  2. Wilcox RA, Flies DB, Zhu G, Johnson AJ, Tamada K, Chapoval AI, Strome SE, Pease LR, Chen L (2002) Provision of antigen and CD137 signaling breaks immunological ignorance, promoting regression of poorly immunogenic tumors. J Clin Invest 109:651–659. doi:10.1172/JCI14184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Choi BK, Kim YH, Kang WJ, Lee SK, Kim KH, Shin SM, Yokoyama WM, Kim TY, Kwon BS (2007) Mechanisms involved in synergistic anticancer immunity of anti-4-1BB and anti-CD4 therapy. Cancer Res 67:8891–8899. doi:10.1158/0008-5472.CAN-07-1056

    Article  CAS  PubMed  Google Scholar 

  4. Melero I, Shuford WW, Newby SA, Aruffo A, Ledbetter JA, Hellstrom KE, Mittler RS, Chen L (1997) Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med 3:682–685. doi:10.1038/nm0697-682

    Article  CAS  PubMed  Google Scholar 

  5. Murillo O, Dubrot J, Palazón A, Arina A, Azpilikueta A, Alfaro C, Solano S, Ochoa MC, Berasain C, Gabari I, Pérez-Gracia JL, Berraondo P, Hervás-Stubbs S, Melero I (2009) In vivo depletion of DC impairs the anti-tumor effect of agonistic anti-CD137 mAb. Eur J Immunol 39:2424–2436. doi:10.1002/eji.200838958

    Article  CAS  PubMed  Google Scholar 

  6. Bruhns P (2012) Properties of mouse and human IgG receptors and their contribution to disease models. Blood 119:5640–5649. doi:10.1182/blood-2012-01-380121

    Article  CAS  PubMed  Google Scholar 

  7. White AL, Chan HT, Roghanian A, French RR, Mockridge CI, Tutt AL, Dixon SV, Ajona D, Verbeek JS, Al-Shamkhani A, Cragg MS, Beers SA, Glennie MJ (2011) Interaction with FcγRIIB Is Critical for the agonistic activity of anti-CD40 monoclonal antibody. J Immunol 187:1754–1763. doi:10.4049/jimmunol.1101135

    Article  CAS  PubMed  Google Scholar 

  8. Li F, Ravetch JV (2011) Inhibitory Fc gamma receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies. Science 333:1030–1034. doi:10.1126/science.1206954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K, Arce F, Roddie C, Henry JY, Yagita H, Wolchok JD, Peggs KS, Ravetch JV, Allison JP, Quezada SA (2013) Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti–CTLA-4 therapy against melanoma. J Exp Med 210:1695–1710. doi:10.1084/jem.20130579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Bulliard Y, Jolicoeur R, Windman M, Rue SM, Ettenberg S, Knee DA, Wilson NS, Dranoff G, Brogdon JL (2013) Activating Fc γ receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J Exp Med 210:1685–1693. doi:10.1084/jem.20130573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lin W, Voskens CJ, Zhang X, Schindler DG, Wood A, Burch E, Wei Y, Chen L, Tian G, Tamada K, Wang LX, Schulze DH, Mann D, Strome SE (2008) Fc-dependent expression of CD137 on human NK cells: insights into “agonistic” effects of anti-CD137 monoclonal antibodies. Blood 112:699–707. doi:10.1182/blood-2007-11-122465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kim JA, Averbook BJ, Chambers K, Rothchild K, Kjaergaard J, Papay R, Shu S (2001) Divergent effects of 4-1BB antibodies on antitumor immunity and on tumor-reactive T-cell generation. Cancer Res 61:2031–2037

    CAS  PubMed  Google Scholar 

  13. Shuford WW, Klussman K, Tritchler DD, Loo DT, Chalupny J, Siadak AW, Brown TJ, Emswiler J, Raecho H, Larsen CP, Pearson TC, Ledbetter JA, Aruffo A, Mittler RS (1997) 4-1BB costimulatory signals preferentially induce CD8 + T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med 186:47–55. doi:10.1084/jem.186.1.47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Takai T, Li M, Sylvestre D, Clynes R, Ravetch JV (1994) FcR gamma chain deletion results in pleiotrophic effector cell defects. Cell 76:519–529. doi:10.1016/0092-8674(94)90115-5

    Article  CAS  PubMed  Google Scholar 

  15. Dubrot J, Milheiro F, Alfaro C, Palazón A, Martinez-Forero I, Pérez-Gracia J, Morales-Kastresana A, Romero-Trevejo J, Ochoa M, Hervás-Stubbs S, Prieto J, Jure-Kunkel M, Chen L, Melero I (2010) Treatment with anti-CD137 mAbs causes intense accumulations of liver T cells without selective antitumor immunotherapeutic effects in this organ. Cancer Immunol Immunother 59:1223–1233. doi:10.1007/s00262-010-0846-9

    Article  CAS  PubMed  Google Scholar 

  16. Ju SA, Park SM, Lee SC, Kwon BS, Kim BS (2007) Marked expansion of CD11c + CD8 + T-cells in melanoma-bearing mice induced by anti-4-1BB monoclonal antibody. Mol Cells 24:132–138

    CAS  PubMed  Google Scholar 

  17. Uss E, Rowshani AT, Hooibrink B, Lardy NM, van Lier RAW, ten Berge IJM (2006) CD103 is a marker for alloantigen-induced regulatory CD8 + T cells. J Immunol 177:2775–2783. doi:10.4049/jimmunol.177.5.2775

    Article  CAS  PubMed  Google Scholar 

  18. Myers L, Croft M, Kwon BS, Mittler RS, Vella AT (2005) Peptide-specific CD8 T regulatory cells use IFN-γ to elaborate TGF-β based suppression. J Immunol 174:7625–7632. doi:10.4049/jimmunol.174.12.7625

    Article  CAS  PubMed  Google Scholar 

  19. Vinay DS, Kim CH, Choi BK, Kwon BS (2009) Origins and functional basis of regulatory CD11c + CD8 + T cells. Eur J Immunol 39:1552–1563. doi:10.1002/eji.200839057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bruggemann M, Free J, Diamond A, Howard J, Cobbold S, Waldmann H (1986) Immunoglobulin heavy chain locus of the rat: striking homology to mouse antibody genes. Proc Natl Acad Sci USA 83:6075–6079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Aloulou M, Ben Mkaddem S, Biarnes-Pelicot M, Boussetta T, Souchet H, Rossato E, Benhamou M, Crestani B, Zhu Z, Blank U, Launay P, Monteiro RC (2012) IgG1 and IVIg induce inhibitory ITAM signaling through FcγRIII controlling inflammatory responses. Blood 119:3084–3096. doi:10.1182/blood-2011-08-376046

    Article  CAS  PubMed  Google Scholar 

  22. Ivashkiv LB (2009) Cross-regulation of signaling by ITAM-associated receptors. Nat Immunol 10:340–347. doi:10.1038/ni.1706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Siragam V, Crow AR, Brinc D, Song S, Freedman J, Lazarus AH (2006) Intravenous immunoglobulin ameliorates ITP via activating Fc gamma receptors on dendritic cells. Nat Med 12:688–692. doi:10.1038/nm1416

    Article  CAS  PubMed  Google Scholar 

  24. Sutterwala FS, Noel GJ, Salgame P, Mosser DM (1998) Reversal of proinflammatory responses by ligating the macrophage Fcγ receptor type I. J Exp Med 188:217–222. doi:10.1084/jem.188.1.217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Erdinc Sunay MM, Fox-Talbot K, Velidedeoglu E, Baldwin WM III, Wasowska BA (2013) Absence of FcγRIII results in increased proinflammatory response in FcγRIII-KO cardiac recipients. Transplantation 96:601–608. doi:10.1097/TP.0b013e31829c2455

    Article  CAS  PubMed  Google Scholar 

  26. Pfirsch-Maisonnas S, Aloulou M, Xu T, Claver J, Kanamaru Y, Tiwari M, Launay P, Monteiro RC, Blank U (2011) Inhibitory ITAM signaling traps activating receptors with the phosphatase SHP-1 to form polarized “inhibisome” clusters. Sci Signal 4:ra24. doi:10.1126/scisignal.2001309

  27. Martinez-Forero I, Azpilikueta A, Bolanos-Mateo E, Nistal-Villan E, Palazon A, Teijeira A, Perez-Chacon G, Morales-Kastresana A, Murillo O, Jure-Kunkel M, Zapata JM, Melero I (2013) T cell costimulation with anti-CD137 monoclonal antibodies is mediated by K63-polyubiquitin-dependent signals from endosomes. J Immunol 190:6694–6706. doi:10.4049/jimmunol.1203010

    Article  CAS  PubMed  Google Scholar 

  28. Palazon A, Martinez-Forero I, Teijeira A, Morales-Kastresana A, Alfaro C, Sanmamed MF, Perez-Gracia JL, Penuelas I, Hervas-Stubbs S, Rouzaut A, de Landazuri MO, Jure-Kunkel M, Aragones J, Melero I (2012) The HIF-1alpha hypoxia response in tumor-infiltrating T lymphocytes induces functional CD137 (4-1BB) for immunotherapy. Cancer Discov 2:608–623. doi:10.1158/2159-8290.CD-11-0314

    Article  CAS  PubMed  Google Scholar 

  29. Mancardi DA, Iannascoli B, Hoos S, England P, Daeron M, Bruhns P (2008) FcgammaRIV is a mouse IgE receptor that resembles macrophage FcepsilonRI in humans and promotes IgE-induced lung inflammation. J Clin Invest 118:3738–3750. doi:10.1172/JCI36452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Biburger M, Aschermann S, Schwab I, Lux A, Albert H, Danzer H, Woigk M, Dudziak D, Nimmerjahn F (2011) Monocyte subsets responsible for immunoglobulin G-dependent effector functions in vivo. Immunity 35:932–944. doi:10.1016/j.immuni.2011.11.009

    Article  CAS  PubMed  Google Scholar 

  31. John LB, Howland LJ, Flynn JK, West AC, Devaud C, Duong CP, Stewart TJ, Westwood JA, Guo ZS, Bartlett DL, Smyth MJ, Kershaw MH, Darcy PK (2012) Oncolytic virus and Anti–4-1BB combination therapy elicits strong antitumor immunity against established cancer. Cancer Res 72:1651–1660. doi:10.1158/0008-5472.CAN-11-2788

    Article  CAS  PubMed  Google Scholar 

  32. Ito F, Li Q, Shreiner AB, Okuyama R, Jure-Kunkel MN, Teitz-Tennenbaum S, Chang AE (2004) Anti-CD137 monoclonal antibody administration augments the antitumor efficacy of dendritic cell-based vaccines. Cancer Res 64:8411–8419. doi:10.1158/0008-5472.CAN-04-0590

    Article  CAS  PubMed  Google Scholar 

  33. Cuadros C, Dominguez AL, Lollini P, Croft M, Mittler RS, Borgström P, Lustgarten J (2005) Vaccination with dendritic cells pulsed with apoptotic tumors in combination with anti-OX40 and anti-4-1BB monoclonal antibodies induces T cell–mediated protective immunity in Her-2/neu transgenic mice. Int J Cancer 116:934–943. doi:10.1002/ijc.21098

    CAS  PubMed  Google Scholar 

  34. Houot R, Goldstein MJ, Kohrt HE, Myklebust JH, Alizadeh AA, Lin JT, Irish JM, Torchia JA, Kolstad A, Chen L, Levy R (2009) Therapeutic effect of CD137 immunomodulation in lymphoma and its enhancement by Treg depletion. Blood 114:3431–3438. doi:10.1182/blood-2009-05-223958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Murillo O, Arina A, Hervas-Stubbs S, Gupta A, McCluskey B, Dubrot J, Palazon A, Azpilikueta A, Ochoa MC, Alfaro C, Solano S, Perez-Gracia JL, Oyajobi BO, Melero I (2008) Therapeutic antitumor efficacy of anti-CD137 agonistic monoclonal antibody in mouse models of Myeloma. Clin Cancer Res 14:6895–6906. doi:10.1158/1078-0432.ccr-08-0285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kim YH, Choi BK, Oh HS, Kang WJ, Mittler RS, Kwon BS (2009) Mechanisms involved in synergistic anticancer effects of anti-4-1BB and cyclophosphamide therapy. Mol Cancer Ther 8:469–478. doi:10.1158/1535-7163.mct-08-0993

    Article  CAS  PubMed  Google Scholar 

  37. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252. doi:10.1038/32588

    Article  CAS  PubMed  Google Scholar 

  38. French RR, Taraban VY, Crowther GR, Rowley TF, Gray JC, Johnson PW, Tutt AL, Al-Shamkhani A, Glennie MJ (2007) Eradication of lymphoma by CD8 T cells following anti-CD40 monoclonal antibody therapy is critically dependent on CD27 costimulation. Blood 109:4810–4815. doi:10.1182/blood-2006-11-057216

    Article  CAS  PubMed  Google Scholar 

  39. Miller RE, Jones J, Le T, Whitmore J, Boiani N, Gliniak B, Lynch DH (2002) 4-1BB-specific monoclonal antibody promotes the generation of tumor-specific immune responses by direct activation of CD8 T cells in a CD40-dependent manner. J Immunol 169:1792–1800. doi:10.4049/jimmunol.169.4.1792

    Article  CAS  PubMed  Google Scholar 

  40. Chu C, Yu Y, Shen K, Lowell C, Lanier L, Hamerman J (2008) Increased TLR responses in dendritic cells lacking the ITAM-containing adapters DAP12 and FcRγ. Eur J Immunol 38:166–173. doi:10.1002/eji.200737600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by funds from the Orokawa Foundation.

Conflict of interest

Dr. Strome is a Cofounder and Major stockholder in Gliknik Inc., a biotechnology company. He also receives royalties for intellectual property, related to B7-H1 (PD-L1), licensed by the Mayo Clinic College of Medicine to third parties. All other authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott E. Strome.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 339 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sallin, M.A., Zhang, X., So, E.C. et al. The anti-lymphoma activities of anti-CD137 monoclonal antibodies are enhanced in FcγRIII−/− mice. Cancer Immunol Immunother 63, 947–958 (2014). https://doi.org/10.1007/s00262-014-1567-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1567-2

Keywords

Navigation