Skip to main content

Advertisement

Log in

Single- and multiparameter magnetic resonance imaging for diagnosing and severity grading of chronic pancreatitis

  • Pancreas
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

The study aimed to determine the performance of advanced magnetic resonance imaging (MRI), including a multiparametric MRI-index, for diagnosing and severity grading of chronic pancreatitis (CP) at various functional stages with focus on detection of CP with preserved pancreatic function.

Methods

Fifty-four CP patients and 35 healthy controls underwent MRI including assessment of pancreatic volume, main pancreatic duct (MPD) diameter, T1 relaxation time, magnetic resonance elastography (MRE) derived stiffness, and intravoxel incoherent motion (IVIM) diffusion-weighted imaging. Patients were categorized into three subgroups: Preserved pancreatic function (n = 14), partial pancreatic insufficiency (exocrine insufficiency or diabetes, n = 25), and complete pancreatic insufficiency (exocrine insufficiency and diabetes, n = 15). A multiparametric MRI-index was based on ordinal logistic regression analysis. Diagnostic performances of MRI parameters for diagnosing CP at different functional stages were determined using receiver operating characteristic (ROC) analysis.

Results

All MRI parameters differed across CP subgroups and healthy controls (all P < 0.001), except for IVIM. T1 relaxation time (ROC area under the curve (ROC-AUC) 0.82), MRE (ROC-AUC 0.88), and MRI-index (ROC-AUC 0.86) showed the highest performance for detecting patients with preserved pancreatic function (early CP) vs. healthy controls. For detecting preserved pancreatic function vs. partial insufficiency, pancreatic volume, MRI-index, and T1 relaxation time performed best (all ROC-AUC > 0.75), with the MRI-index tending to outperform MRE (ROC-AUC 0.77 vs. 0.63; P = 0.10).

Conclusion

Quantitative assessments of T1 relaxation time and MRE-derived stiffness seem promising for diagnosing CP at different functional stages and may together with multiparametric MRI-index be used for early identification, staging and monitoring of CP.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Beyer G, Habtezion A, Werner J, et al (2020) Chronic pancreatitis. Lancet 396:499–512. https://doi.org/10.1016/S0140-6736(20)31318-0

    Article  Google Scholar 

  2. Bang UC, Benfield T, Hyldstrup L, et al (2014) Mortality, cancer, and comorbidities associated with chronic pancreatitis: A Danish nationwide matched-cohort study. Gastroenterology 146:989–94. https://doi.org/10.1053/j.gastro.2013.12.033

    Article  Google Scholar 

  3. Frøkjær JB, Akisik F, Farooq A, et al (2018) Guidelines for the Diagnostic Cross Sectional Imaging and Severity Scoring of Chronic Pancreatitis. Pancreatology 18:764–773. https://doi.org/10.1016/j.pan.2018.08.012

    Article  Google Scholar 

  4. Whitcomb DC, Shimosegawa T, Chari ST, et al (2018) International consensus statements on early chronic Pancreatitis. Recommendations from the working group for the international consensus guidelines for chronic pancreatitis in collaboration with The International Association of Pancreatology, American Pan. Pancreatology 18:516–527. https://doi.org/10.1016/j.pan.2018.05.008

    Article  Google Scholar 

  5. Liu C, Shi Y, Lan G, et al (2021) Evaluation of Pancreatic Fibrosis Grading by Multiparametric Quantitative Magnetic Resonance Imaging. J Magn Reson Imaging 54:1417–1429. https://doi.org/10.1002/jmri.27626

    Article  Google Scholar 

  6. Wang M, Gao F, Wang X, et al (2018) Magnetic resonance elastography and T 1 mapping for early diagnosis and classification of chronic pancreatitis. J Magn Reson Imaging 48:837–845. https://doi.org/10.1002/jmri.26008

    Article  Google Scholar 

  7. Tirkes T, Lin C, Fogel EL, et al (2017) T1 mapping for diagnosis of mild chronic pancreatitis. J Magn Reson Imaging 45:1171–1176. https://doi.org/10.1002/jmri.25428

    Article  Google Scholar 

  8. Steinkohl E, Olesen SS, Hansen TM, et al (2021) T1 relaxation times and MR elastography‑derived stiffness: new potential imaging biomarkers for the assessment of chronic pancreatitis. Abdom Radiol 46:5598–5608. https://doi.org/10.1007/s00261-021-03276-5

    Article  Google Scholar 

  9. Fujita N, Nishie A, Asayama Y, et al (2020) Intravoxel incoherent motion magnetic resonance imaging for assessment of chronic pancreatitis with special focus on its early stage. Acta radiol 61:579–585. https://doi.org/10.1177/0284185119872687

    Article  Google Scholar 

  10. Tirkes T, Yadav D, Conwell DL, et al (2022) Quantitative MRI of chronic pancreatitis: results from a multi-institutional prospective study, magnetic resonance imaging as a non-invasive method for assessment of pancreatic fibrosis (MINIMAP). Abdom Radiol 47:3792–3805. https://doi.org/10.1007/s00261-022-03654-7

    Article  Google Scholar 

  11. Steinkohl E, Olesen SS, Hansen TM, et al (2022) Quantification of parenchymal fibrosis in chronic pancreatitis: relation to atrophy and pancreatic function. Acta radiol. https://doi.org/10.1177/02841851221114772

  12. Novovic S, Borch A, Werge M, et al (2019) Characterisation of the fibroinflammatory process involved in progression from acute to chronic pancreatitis: study protocol for a multicentre, prospective cohort study. BMJ Open 9:e028999. https://doi.org/10.1136/bmjopen-2019-028999

    Article  Google Scholar 

  13. Schneider A, Lohr JM, Singer M V (2007) The M-ANNHEIM classification of chronic pancreatitis: introduction of a unifying classification system based on a review of previous classifications of the disease . J Gastroenterol. 42:101–119. https://doi.org/10.1007/s00535-006-1945-4

    Article  Google Scholar 

  14. Gavin JR, Alberti KGMM, Davidson MB, et al (2003) Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 26:S5-20. https://doi.org/10.2337/diacare.26.2007.s5

    Article  Google Scholar 

  15. Hardt PD, Marzeion AM, Schnell-Kretschmer H, et al (2002) Fecal elastase 1 measurement compared with endoscopic retrograde cholangiopancreatography for the diagnosis of chronic pancreatitis. Pancreas 25:e6-9

    Article  Google Scholar 

  16. Steinkohl E, Bertoli D, Hansen TM, et al (2021) Practical and clinical applications of pancreatic magnetic resonance elastography: a systematic review. Abdom Radiol (New York) 46:4744–4764. https://doi.org/10.1007/s00261-021-03143-3

    Article  Google Scholar 

  17. Steinkohl E, Olesen SS, Mark EB, et al (2020) Progression of parenchymal and ductal findings in patients with chronic pancreatitis: A 4-year follow-up MRI study. Eur J Radiol 125:108868. https://doi.org/10.1016/j.ejrad.2020.108868

    Article  Google Scholar 

  18. Bakke KM, Grøvik E, Meltzer S, et al (2019) Comparison of Intravoxel incoherent motion imaging and multiecho dynamic contrast-based MRI in rectal cancer. J Magn Reson Imaging 50:1114–1124. https://doi.org/10.1002/JMRI.26740

    Article  Google Scholar 

  19. Madzak A, Olesen SS, Haldorsen IS, et al (2017) Secretin-stimulated MRI characterization of pancreatic morphology and function in patients with chronic pancreatitis. Pancreatology 17:228–236. https://doi.org/10.1016/j.pan.2017.01.009

    Article  CAS  Google Scholar 

  20. Schrader H, Menge BA, Schneider S, et al (2009) Reduced Pancreatic Volume and β-Cell Area in Patients With Chronic Pancreatitis. Gastroenterology 136:513–522. https://doi.org/10.1053/j.gastro.2008.10.083

    Article  Google Scholar 

  21. Djuric-Stefanovic A, Masulovic D, Kostic J, et al (2012) CT volumetry of normal pancreas: correlation with the pancreatic diameters measurable by the cross-sectional imaging, and relationship with the gender, age, and body constitution. Surg Radiol Anat 34:811–817. https://doi.org/10.1007/s00276-012-0962-7

    Article  CAS  Google Scholar 

  22. Geraghty EM, Boone JM, McGahan JP, Jain K (2004) Normal organ volume assessment from abdominal CT. Abdom Imaging 29:482–490. https://doi.org/10.1007/s00261-003-0139-2

    Article  CAS  Google Scholar 

  23. Saisho Y, Butler AE, Meier JJ, et al (2007) Pancreas volumes in humans from birth to age one hundred taking into account sex, obesity, and presence of type‐2 diabetes. Clin Anat 20:933–942. https://doi.org/10.1002/ca.20543

    Article  CAS  Google Scholar 

  24. Syed A-B, Mahal RS, Schumm LP, Dachman AH (2012) Pancreas Size and Volume on Computed Tomography in Normal Adults. Pancreas 41:589–595. https://doi.org/10.1097/MPA.0b013e318237457f

    Article  Google Scholar 

  25. Szczepaniak EW, Malliaras K, Nelson MD, Szczepaniak LS (2013) Measurement of Pancreatic Volume by Abdominal MRI: A Validation Study. PLoS One 8:1–6. https://doi.org/10.1371/journal.pone.0055991

    Article  CAS  Google Scholar 

  26. Kipp JP, Olesen SS, Mark EB, et al (2019) Normal pancreatic volume in adults is influenced by visceral fat, vertebral body width and age. Abdom Radiol 44:958–966. https://doi.org/10.1007/s00261-018-1793-8

    Article  Google Scholar 

  27. Faghih M, Noë M, Mannan R, et al (2020) Pancreatic volume does not correlate with histologic fibrosis in adult patients with recurrent acute and chronic pancreatitis. Pancreatology 20:1078–1084. https://doi.org/10.1016/j.pan.2020.07.409

    Article  Google Scholar 

  28. Banerjee R, Pavlides M, Tunnicliffe EM, et al (2014) Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J Hepatol 60:69–77. https://doi.org/10.1016/j.jhep.2013.09.002

    Article  Google Scholar 

  29. Cassinotto C, Feldis M, Vergniol J, et al (2015) MR relaxometry in chronic liver diseases: Comparison of T1 mapping, T2 mapping, and diffusion-weighted imaging for assessing cirrhosis diagnosis and severity. Eur J Radiol 84:1459–1465. https://doi.org/10.1016/j.ejrad.2015.05.019

    Article  Google Scholar 

  30. Li Z, Sun J, Hu X, et al (2016) Assessment of liver fibrosis by variable flip angle T1 mapping at 3.0T. J Magn Reson Imaging 43:698–703. https://doi.org/10.1002/jmri.25030

    Article  Google Scholar 

  31. Whitcomb DC, Frulloni L, Garg P, et al (2016) Chronic pancreatitis: An international draft consensus proposal for a new mechanistic definition . Pancreatol. 16:218–224

    Article  Google Scholar 

  32. Kenyhercz WE, Raterman B, Illapani VSP, et al (2016) Quantification of aortic stiffness using magnetic resonance elastography: Measurement reproducibility, pulse wave velocity comparison, changes over cardiac cycle, and relationship with age. Magn Reson Med 75:1920–1926. https://doi.org/10.1002/mrm.25719

    Article  CAS  Google Scholar 

  33. An H, Shi Y, Guo Q, Liu Y (2016) Test–retest reliability of 3D EPI MR elastography of the pancreas. Clin Radiol 71:1068.e7-1068.e12. https://doi.org/10.1016/j.crad.2016.03.014

    Article  CAS  Google Scholar 

  34. Yoon JH, Lee JM, Lee KB, et al (2016) Pancreatic steatosis and Fibrosis: Quantitative Assessment with Preoperative Multiparametric MR Imaging. Radiology 279:140–150. https://doi.org/10.1148/radiol.2015142254

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank radiographer Kenneth Krogh Jensen for his assistance in data collection.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Brøndum Frøkjær.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olesen, S.S., Steinkohl, E., Hansen, T.M. et al. Single- and multiparameter magnetic resonance imaging for diagnosing and severity grading of chronic pancreatitis. Abdom Radiol 48, 630–641 (2023). https://doi.org/10.1007/s00261-022-03760-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-022-03760-6

Keywords

Navigation