Skip to main content

Advertisement

Log in

Evaluation of renal fibrosis in various causes of glomerulonephritis by MR elastography: a clinicopathologic comparative analysis

  • Kidneys, Ureters, Bladder, Retroperitoneum
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Background

Renal parenchymal fibrosis is the most important determinant of kidney disease progression and it is determined via biopsy. The aim of this study is to evaluate the renal stiffness noninvasively by magnetic resonance elastography (MRE) and to compare it with clinicopathologic parameters in glomerulonephritis and AA amyloidosis patients.

Methods

Thirty-four patients with glomerular filtration rate (GFR) over 20 ml/min/1.73m2 had non-contrast MRE prospectively. Kidney stiffness values were obtained from whole kidney, cortex, and medulla. Values were correlated with GFR, albuminuria, proteinuria, and degree of fibrosis that are assessed via renal biopsy. Patients were grouped clinicopathologically to assess the relation between stiffness and chronicity.

Results

Mean whole kidney, cortex, and medulla stiffnesses were 3.78 (± 1.26), 3.63 (± 1.25), and 4.77 (± 2.03) kPa, respectively. Mean global glomerulosclerosis was 22% (± 18%) and median segmental glomerulosclerosis was 4% (min–max: 0%–100%). Extent of tubulointerstitial fibrosis was less than 25% in 26 of the patients (76.5%), 25%–50% in 6 of the patients (17.6%), and higher than 50% in 2 of the patients (5.9%). Fourteen patients were defined to have chronic renal parenchymal injury. MRE-derived stiffness values correlated negatively with parameters of fibrosis. Lower stiffness values were observed in patients with chronic renal injury compared to those without (P < 0.05 for whole kidney and medulla MRE-derived stiffness).

Conclusion

MRE-derived stiffness values were lower in patients with chronic injury. Stiffness decreases as glomerulosclerosis and tubulointerstitial fibrosis progresses in patients with primary glomerulonephritis and AA amyloidosis. With future studies, there may be a role for MRE to assess renal function in concert with conventional markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Boor P, Ostendorf T, Floege J. Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol. 2010 Nov;6(11):643–56.

    Article  PubMed  Google Scholar 

  2. Rockey DC, Bell PD, Hill JA. Fibrosis--a common pathway to organ injury and failure. N Engl J Med. 2015 Mar;372(12):1138–49.

    Article  CAS  PubMed  Google Scholar 

  3. Roberts ISD, Cook HT, Troyanov S, Alpers CE, Amore A, Barratt J, et al. The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int. 2009 Sep;76(5):546–56.

    Article  PubMed  Google Scholar 

  4. Risdon RA, Sloper JC, De Wardener HE. Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis. Lancet (London, England). 1968 Aug;2(7564):363–6.

    Article  CAS  Google Scholar 

  5. Brown RS, Sun MRM, Stillman IE, Russell TL, Rosas SE, Wei JL. The utility of magnetic resonance imaging for noninvasive evaluation of diabetic nephropathy. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc. 2020 Jun;35(6):970–8.

    Google Scholar 

  6. Luciano RL, Moeckel GW. Update on the Native Kidney Biopsy: Core Curriculum 2019. Am J kidney Dis Off J Natl Kidney Found. 2019 Mar;73(3):404–15.

    Article  Google Scholar 

  7. Lees JS, McQuarrie EP, Mordi N, Geddes CC, Fox JG, Mackinnon B. Risk factors for bleeding complications after nephrologist-performed native renal biopsy. Clin Kidney J. 2017 Aug;10(4):573–7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Roccatello D, Sciascia S, Rossi D, Naretto C, Bazzan M, Solfietti L, et al. Outpatient percutaneous native renal biopsy: safety profile in a large monocentric cohort. BMJ Open. 2017 Jun;7(6):e015243.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fiorentino M, Bolignano D, Tesar V, Pisano A, Van Biesen W, D’’Arrigo G, et al. Renal Biopsy in 2015 - From Epidemiology to Evidence-Based Indications. Am J Nephrol [Internet]. 2016;43(1):1–19. Available from: https://www.karger.com/DOI/https://doi.org/10.1159/000444026

    Article  PubMed  Google Scholar 

  10. Jiang K, Ferguson CM, Lerman LO. Noninvasive assessment of renal fibrosis by magnetic resonance imaging and ultrasound techniques. Transl Res. 2019 Jul;209:105–20.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kaimori J-Y, Isaka Y, Hatanaka M, Yamamoto S, Ichimaru N, Fujikawa A, et al. Visualization of kidney fibrosis in diabetic nephropathy by long diffusion tensor imaging MRI with spin-echo sequence. Sci Rep. 2017 Jul;7(1):5731.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hueper K, Khalifa AA, Bräsen JH, Vo Chieu VD, Gutberlet M, Wintterle S, et al. Diffusion-Weighted imaging and diffusion tensor imaging detect delayed graft function and correlate with allograft fibrosis in patients early after kidney transplantation. J Magn Reson Imaging. 2016 Jul;44(1):112–21.

    Article  PubMed  Google Scholar 

  13. Xu X, Palmer SL, Lin X, Li W, Chen K, Yan F, et al. Diffusion-weighted imaging and pathology of chronic kidney disease: initial study. Abdom Radiol (New York). 2018 Jul;43(7):1749–55.

    Article  Google Scholar 

  14. Feng Q, Ma Z, Wu J, Fang W. DTI for the assessment of disease stage in patients with glomerulonephritis--correlation with renal histology. Eur Radiol. 2015 Jan;25(1):92–8.

    Article  PubMed  Google Scholar 

  15. Friedli I, Crowe LA, Berchtold L, Moll S, Hadaya K, de Perrot T, et al. New Magnetic Resonance Imaging Index for Renal Fibrosis Assessment: A Comparison between Diffusion-Weighted Imaging and T1 Mapping with Histological Validation. Sci Rep. 2016 Jul;6:30088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao J, Wang ZJ, Liu M, Zhu J, Zhang X, Zhang T, et al. Assessment of renal fibrosis in chronic kidney disease using diffusion-weighted MRI. Clin Radiol. 2014 Nov;69(11):1117–22.

    Article  CAS  PubMed  Google Scholar 

  17. Leung G, Kirpalani A, Szeto SG, Deeb M, Foltz W, Simmons CA, et al. Could MRI Be Used To Image Kidney Fibrosis? A Review of Recent Advances and Remaining Barriers. Clin J Am Soc Nephrol. 2017 Jun;12(6):1019–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kline TL, Edwards ME, Garg I, Irazabal M V, Korfiatis P, Harris PC, et al. Quantitative MRI of kidneys in renal disease. Abdom Radiol (New York). 2018 Mar;43(3):629–38.

    Article  PubMed Central  Google Scholar 

  19. Thiravit S, Suwanchatree P, Skulratanasak P, Thiravit P, Suvannarerg V. Correlation Between Apparent Diffusion Coefficient Values of the Renal Parenchyma and Estimated Glomerular Filtration Rates on 3-T Diffusion-Weighted Echo-Planar Magnetic Resonance Imaging. J Comput Assist Tomogr. 2019;43(5):780–5.

    Article  PubMed  Google Scholar 

  20. Toya R, Naganawa S, Kawai H, Ikeda M. Correlation between estimated glomerular filtration rate (eGFR) and apparent diffusion coefficient (ADC) values of the kidneys. Magn Reson Med Sci MRMS an Off J Japan Soc Magn Reson Med. 2010;9(2):59–64.

    Google Scholar 

  21. Namimoto T, Yamashita Y, Mitsuzaki K, Nakayama Y, Tang Y, Takahashi M. Measurement of the apparent diffusion coefficient in diffuse renal disease by diffusion-weighted echo-planar MR imaging. J Magn Reson Imaging. 1999 Jun;9(6):832–7.

    Article  CAS  PubMed  Google Scholar 

  22. Lee CU, Glockner JF, Glaser KJ, Yin M, Chen J, Kawashima A, et al. MR elastography in renal transplant patients and correlation with renal allograft biopsy: a feasibility study. Acad Radiol. 2012 Jul;19(7):834–41.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Marticorena Garcia SR, Fischer T, Dürr M, Gültekin E, Braun J, Sack I, et al. Multifrequency Magnetic Resonance Elastography for the Assessment of Renal Allograft Function. Invest Radiol. 2016 Sep;51(9):591–5.

    Article  PubMed  Google Scholar 

  24. Kim JK, Yuen DA, Leung G, Jothy S, Zaltzman J, Ramesh Prasad G V, et al. Role of Magnetic Resonance Elastography as a Noninvasive Measurement Tool of Fibrosis in a Renal Allograft: A Case Report. Transplant Proc. 2017 Sep;49(7):1555–9.

    Article  CAS  PubMed  Google Scholar 

  25. Kirpalani A, Hashim E, Leung G, Kim JK, Krizova A, Jothy S, et al. Magnetic Resonance Elastography to Assess Fibrosis in Kidney Allografts. Clin J Am Soc Nephrol. 2017 Oct;12(10):1671–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Samir AE, Allegretti AS, Zhu Q, Dhyani M, Anvari A, Sullivan DA, et al. Shear wave elastography in chronic kidney disease : a pilot experience in native kidneys. 2015;1–9.

    Article  Google Scholar 

  27. Chen J, Kawashima A, Kim B, Kremers WK, Ehman RL, Gloor JM. MR Elastography in Renal Transplant Patients and Correlation with Renal Allograft Biopsy : A Feasibility Study. Acad Radiol [Internet]. 19(7):834–41. Available from: http://dx.doi.org/https://doi.org/10.1016/j.acra.2012.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  28. Toguchi M, Tsurusaki M, Yada N, Sofue K, Hyodo T, Onoda M, et al. Magnetic resonance elastography in the assessment of hepatic fibrosis: a study comparing transient elastography and histological data in the same patients. Abdom Radiol (New York). 2017 Jun;42(6):1659–66.

    Article  Google Scholar 

  29. Han JH, Ahn J-H, Kim J-S. Magnetic resonance elastography for evaluation of renal parenchyma in chronic kidney disease: a pilot study. Radiol Med. 2020 May;

    Article  PubMed  Google Scholar 

  30. Schiller AM, Pellegrino PR, Zucker IH. Eppur Si Muove: The dynamic nature of physiological control of renal blood flow by the renal sympathetic nerves. Auton Neurosci. 2017 May;204:17–24.

    Article  PubMed  Google Scholar 

  31. Liu R, Das B, Xiao W, Li Z, Li H, Lee K, et al. A Novel Inhibitor of Homeodomain Interacting Protein Kinase 2 Mitigates Kidney Fibrosis through Inhibition of the TGF-β1/Smad3 Pathway. J Am Soc Nephrol. 2017 Jul;28(7):2133–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Karihaloo A. Anti-fibrosis therapy and diabetic nephropathy. Curr Diab Rep. 2012 Aug;12(4):414–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by hacettepe üniversitesi with Grant No. TTU 2019-17871.

Author information

Authors and Affiliations

Authors

Contributions

İ.S.İ, A.S., M.K., and M.A. designed the study, A.T.G., C.C., C.Ö. M.Ü.K. T.Y., R.Y., B.A, and Y.E collected the data, A.T.G., İ.S.İ, A.S., M.K., and M.A. analyzed the data; A.T.G., İ.S.İ, A.S., M.K., and M.A. wrote the paper.

Corresponding author

Correspondence to Alper Tuna Güven.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güven, A.T., Idilman, I.S., Cebrayilov, C. et al. Evaluation of renal fibrosis in various causes of glomerulonephritis by MR elastography: a clinicopathologic comparative analysis. Abdom Radiol 47, 288–296 (2022). https://doi.org/10.1007/s00261-021-03296-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-021-03296-1

Keywords

Navigation