Skip to main content

Advertisement

Log in

Use of diffusion-weighted imaging in the noninvasive diagnostic of obstructed biliary ducts

  • Hepatobiliary
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Objective

This study sought to evaluate the role of diffusion-weighted imaging (DWI) in differentiation between obstructed and unobstructed bile ducts in patients undergoing magnetic resonance imaging (MRI).

Methods

Eighty-four patients, 40 males and 44 females (mean age: 56.4 ± 15.1 years), undergoing MRI with DWI (0–50–500–700) were evaluated and divided into two groups: 58 with abnormal laboratory tests (obstructed group) and 26 with normal laboratory values (unobstructed group). Laboratory tests were total bilirubin, alkaline phosphatase, and gamma-glutamyltransferase. Median ADC values were calculated and correlated with laboratory tests and degree of bile-duct dilatation (absent, moderate, or severe). The persistence of signal on DWI (b500 and b700) in the biliary tract was evaluated. Bilirubin values were tested for correlation with bile-duct ADC values and persistence of b700 signal. For statistical analysis, Student t test, chi-square test and Wilcoxon–Mann–Whitney test were used. ADC maps were plotted for three levels of the biliary tree, and a receiver operating characteristic (ROC) curve was calculated.

Results

In the obstructed group, 15 patients had severe dilatation, 24 had moderate dilatation, and 19 had no appreciable dilatation; 38 patients had persistent signal on b700 images. In the unobstructed group, 23 patients had no dilatation and 3 had moderate dilatation; 4 patients had persistent signal on b700 images. Correlation was found between degree of bile-duct dilatation, bilirubin levels, persistence of b700 signal, and ADC map values. The calculated ADC map cutoff value (353 10–6 mm2/s) was able to differentiate the obstructed and unobstructed groups with 92.3% sensitivity, 81% specificity, and 91.9% accuracy.

Conclusions

DWI is able to distinguish patients with obstructed versus unobstructed bile ducts, regardless of the degree of dilatation, correlating with clinical and laboratory findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6 
Fig. 7 
Fig. 8 

Similar content being viewed by others

Abbreviations

ERCP:

Endoscopic retrograde cholangiopancreatography

MRCP:

Magnetic resonance cholangiopancreatography

MRI:

Magnetic resonance Imaging

SNR:

Signal-to-noise ratio

DWI:

Diffusion-weighted imaging

ADC:

Apparent diffusion coefficient

ROI:

Region-of-interest imaging

NOG:

Unobstructed group

OG:

Obstruction group

TR:

Repetition time

TE:

Echo time

FOV:

Field of view

CSF:

Cerebrospinal fluid

References

  1. Mincis M (2002) Gastroenterologia e hepatologia – diagnóstico e tratamento, 3ª ed. Lemos Editorial, São Paulo: Lemos Editorial

    Google Scholar 

  2. Pérez Fernández T, López Serrano P, Tomás E, et al (2004) Diagnostic and therapeutic approach to cholestatic liver disease. Rev Esp Enferm Dig. https://doi.org/10.4321/s1130-01082004000100008

    Article  PubMed  Google Scholar 

  3. Rege RV(1995) Adverse effects of biliary obstruction: implications for treatment of patients with obstructive jaundice. AJR Am J Roentgenol. https://doi.org/10.2214/ajr.164.2.7839957

    Article  PubMed  Google Scholar 

  4. Singh A, Mann HS, Thukral CL, et al (2014) Diagnostic Accuracy of MRCP as Compared to Ultrasound/CT in Patients with Obstructive Jaundice. J Clin Diagn Res. https://doi.org/10.7860/JCDR/2014/8149.4120

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hünerbein M, Stroszczynski C, Ulmer C, et al (2003) Prospective comparison of transcutaneous 3-dimensional US cholangiography, magnetic resonance cholangiography, and direct cholangiography in the evaluation of malignant biliary obstruction. Gastrointest Endosc. https://doi.org/10.1016/S0016-5107(03)02302-2

    Article  PubMed  Google Scholar 

  6. EASL (2016) Clinical Practice Guidelines on the prevention, diagnosis and treatment of gallstones. J Hepatol. https://doi.org/10.1016/j.jhep.2016.03.005

    Article  Google Scholar 

  7. Kujawski K, Stasiak M, Rysz J (2015) Qualification for endoscopic retrograde cholangiopancreatography in the diagnosis and treatment of extrahepatic cholestasis caused by choledocholithiasis. Arch Med Sci. https://doi.org/10.5114/aoms.2015.56347

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brugge WR, Van Dam J (1999) Pancreatic and biliary endoscopy. N Engl J Med. https://doi.org/10.1056/NEJM199912093412406

    Article  PubMed  Google Scholar 

  9. Borges AC, Almeida PC, Furlani SMT, et al (2018) ERCP performance in a tertiary brasilian center: Focus on new risk factors, complications and quality indicators. Arq Bras Cir Dig. https://doi.org/10.1590/0102-672020180001e1348

    Article  PubMed  PubMed Central  Google Scholar 

  10. Artifon EL, Nakadomari TS, Kashiwagui LY, et al (2016) An innovative ex-vivo model for rapid change oh the papilla for teaching advanced endoscopis retrograde cholangiopancreatography procedures. Arq Bras Cir Dig. https://doi.org/10.1590/0102-6720201600040013

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pannu HK, Fishman EK (2001) Complications of endoscopic retrograde cholangiopancreatography: spectrum of abnormalities demonstrated with CT. Radiographics. https://doi.org/10.1148/radiographics.21.6.g01nv101441

    Article  PubMed  Google Scholar 

  12. Zuber-Jerger I, Endlicher E, Kullmann F, Gelbmann CM (2009) A new grading system to evaluate the risk of endoscopic retrograde cholangiopancreatography. J Gastroenterol. https://doi.org/10.1007/s00535-008-2295-1

    Article  PubMed  Google Scholar 

  13. Mine T, Morizane T, Kawaguchi Y, et al (2017) Clinical practice guideline for post-ERCP pancreatitis. J Gastroenterol. https://doi.org/10.1007/s00535-017-1359-5

    Article  PubMed  Google Scholar 

  14. Hurter D, De Vries C, Potgieter P, Barry R, Botha F, Joubert G (2008) Accuracy of MRCP compared to ERCP in the diagnosis of bile duct disorders. South African J Radiol. https://doi.org/10.4102/sajr.v12i1.580

    Article  Google Scholar 

  15. Osman NM, Mohammad SA, Khalil RM (2016) Diagnostic benefit of MRCP in hepatopancreaticobiliary diseases in children. The Egyptian Journal of Radiology and Nuclear Medicine. https://doi.org/10.1016/j.ejrnm.2015.10.012

    Article  Google Scholar 

  16. Watanabe Y, Nagayama M, Okumura A, et al (2007) MR imaging of acute biliary disorders. Radiographics. https://doi.org/10.1148/rg.272055148

    Article  PubMed  Google Scholar 

  17. Ressureição J, Batista L, Almeida AT, Monteiro D, Almeida N (2014) [“Biliary map”: a review of normal anatomy and main anatomic variants of the biliary tree at MRCP]. Acta Radiol Portuguesa. 103:37-42.

    Google Scholar 

  18. Joo I, Lee JM, Yoon JH (2018) Imaging Diagnosis of Intrahepatic and Perihilar Cholangiocarcinoma: Recent Advances and Challenges. Radiology. https://doi.org/10.1148/radiol.2018171187

    Article  PubMed  Google Scholar 

  19. Katabathina VS, Dasyam AK, Dasyam N, et al (2014) Adult Bile Duct Strictures: Role of MR Imaging and MR Cholangiopancreatography in Characterization. Radiographics. https://doi.org/10.1148/rg.343125211

    Article  PubMed  Google Scholar 

  20. Romagnuolo J, Bardou M, Rahme E, et al (2003) Magnetic resonance cholangiopancreatography: a meta-analysis of test performance in suspected biliary disease. Ann Intern Med. https://doi.org/10.7326/0003-4819-139-7-200310070-00006

    Article  Google Scholar 

  21. Ferrucci JT (1999) MRI and MRCP in pancreaticobiliary malignancy. Ann Oncol. https://doi.org/10.1023/a:1008364130766

    Article  PubMed  Google Scholar 

  22. Pavone P, Laghi A, Passariello R (1999) MR cholangiopancreatography in malignant biliary obstruction. Semin Ultrasound CT MR. 1999;20:317-23.

    Article  CAS  Google Scholar 

  23. Vitellas KM, Keogan MT, Spritzer CE (2000) MR cholangiopancreatography of bile and pancreatic duct abnormalities with emphasis on the single-shot fast spin-echo technique. Radiographics. https://doi.org/10.1148/radiographics.20.4.g00jl23939

    Article  PubMed  Google Scholar 

  24. Hyodo T, Kumano S, Kushihata F, et al (2012) CT and MR cholangiography: advantages and pitfalls in perioperative evaluation of biliary tree. Br J Radiol. https://doi.org/10.1259/bjr/21209407

    Article  PubMed  PubMed Central  Google Scholar 

  25. Watanabe Y, Dohke M, Ishimori T, et al (2000) Pseudo-obstruction of the extrahepatic bile duct due to artifact from arterial pulsatile compression: a diagnostic pitfall of MR cholangiopancreatography. Radiology. https://doi.org/10.1148/radiology.214.3.r00mr09856

    Article  PubMed  Google Scholar 

  26. Watanabe Y, Dohke M, Ishimori T, et al (1999) Diagnostic pitfalls of MR cholangiopancreatography in the evaluation of the biliary tract and gallbladder. Radiographics. https://doi.org/10.1148/radiographics.19.2.g99mr02415

    Article  PubMed  Google Scholar 

  27. Irie H, Honda H, Kuroiwa T, et al (2001) Pitfalls in MR cholangiopancreatographic interpretation. Radiographics. https://doi.org/10.1148/radiographics.21.1.g01ja0523

    Article  PubMed  Google Scholar 

  28. Walser EM, Runyan BR, Heckman MG, et al (2011) Extrahepatic portal biliopathy: proposed etiology on the basis of anatomic and clinical features. Radiology. https://doi.org/10.1148/radiol.10090923

    Article  PubMed  Google Scholar 

  29. Mortelé KJ, Ros PR (2001) Anatomic variants of the biliary tree: MR cholangiographic findings and clinical applications. AJR Am J Roentgenol. https://doi.org/10.2214/ajr.177.2.1770389

    Article  PubMed  Google Scholar 

  30. Dohke M, Watanabe Y, Okumura A, et al (1999) Anomalies and anatomic variants of the biliary tree revealed by MR cholangiopancreatography. AJR Am J Roentgenol. 173:1251-4.

    Article  CAS  Google Scholar 

  31. de Freitas Tertulino F, Schraibman V, Ardengh JC, et al (2015) Diffusion-weighted magnetic resonance imaging indicates the severity of acute pancreatitis. Abdom Imaging. https://doi.org/10.1007/s00261-014-0205-y

    Article  Google Scholar 

  32. Lee NK, Kim S, Kim GH, et al (2012) Diffusion-weighted imaging of biliopancreatic disorders: correlation with conventional magnetic resonance imaging. World J Gastroenterol. https://doi.org/10.3748/wjg.v18.i31.4102

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang J, Liu JJ, Liang YY, et al (2012) Could diffusion-weighted imaging detect injured bile ducts of ischemic-type biliary lesions after orthotopic liver transplantation? AJR Am J Roentgenol. https://doi.org/10.2214/AJR.11.8147

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lee NK, Kim S, Kim DU, et al (2015) Diffusion-weighted magnetic resonance imaging for non-neoplastic conditions in the hepatobiliary and pancreatic regions: pearls and potential pitfalls in imaging interpretation. Abdom Imaging. https://doi.org/10.1007/s00261-014-0235-5

    Article  PubMed  Google Scholar 

  35. Ogawa T, Horaguchi J, Fujita N, et al (2012) High b-value diffusion-weighted magnetic resonance imaging for gallbladder lesions: differentiation between benignity and malignancy. J Gastroenterol. https://doi.org/10.1007/s00535-012-0604-1

    Article  PubMed  Google Scholar 

  36. Francisco FA, de Araujo AL, Oliveira Neto JA, Parente DB (2014) Hepatobiliary contrast agents: differential diagnosis of focal hepatic lesions, pitfalls and other indications. Radiol Bras. https://doi.org/10.1590/0100-3984.2013.1867

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sheppard D, Allan L, Martin P, et al (2004) Contrast-enhanced magnetic resonance cholangiography using mangafodipir compared with standard T2W MRC sequences: a pictorial essay. J Magn Reson Imaging. https://doi.org/10.1002/jmri.20114

    Article  PubMed  Google Scholar 

  38. Lee NK, Kim S, Lee JW, et al (2009) Biliary MR imaging with Gd-EOB-DTPA and its clinical applications. Radiographics. https://doi.org/10.1148/rg.296095501

    Article  PubMed  Google Scholar 

  39. Gupta RT, Brady CM, Lotz J, et al (2010) Dynamic MR imaging of the biliary system using hepatocyte-specific contrast agents. AJR Am J Roentgenol. https://doi.org/10.2214/AJR.09.3641

    Article  PubMed  Google Scholar 

  40. Fayad LM, Kamel IR, Mitchell DG, et al (2005) Functional MR cholangiography: diagnosis of functional abnormalities of the gallbladder and biliary tree. AJR Am J Roentgenol. https://doi.org/10.2214/ajr.184.5.01841563

    Article  Google Scholar 

  41. Van Beers BE, Pastor CM, Hussain HK (2012) Primovist, Eovist: what to expect? J Hepatol. https://doi.org/10.1016/j.jhep.2012.01.031

    Article  PubMed  Google Scholar 

  42. Marckmann P, Skov L, Rossen K, et al (2006) Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol. https://doi.org/10.1681/ASN.2006060601

    Article  PubMed  Google Scholar 

  43. de Campos RO, Heredia V, Ramalho M, et al (2011) Quarter-dose (0.025 mmol/kg) gadobenate dimeglumine for abdominal MRI in patients at risk for nephrogenic systemic fibrosis: preliminary observations. AJR Am J Roentgenol. https://doi.org/10.2214/AJR.10.4500.

  44. Song KD, Kim SH, Lee J, et al (2015) Half-dose gadoxetic acid-enhanced liver magnetic resonance imaging in patients at risk for nephrogenic systemic fibrosis. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2014.12.010

    Article  PubMed  Google Scholar 

  45. Prince MR, Zhang HL, Prowda JC, et al (2009) Nephrogenic systemic fibrosis and its impact on abdominal imaging. Radiographics. https://doi.org/10.1148/rg.296095517

    Article  PubMed  Google Scholar 

  46. Lauenstein T, Ramirez-Garrido F, Kim YH, et al (2015) Nephrogenic systemic fibrosis risk after liver magnetic resonance imaging with gadoxetate disodium in patients with moderate to severe renal impairment: results of a prospective, open-label, multicenter study. Invest Radiol. https://doi.org/10.1097/RLI.0000000000000145

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schwope RB, May LA, Reiter MJ, et al (2015) Gadoxetic acid: pearls and pitfalls. Abdom Imaging. https://doi.org/10.1007/s00261-015-0354-7

    Article  PubMed  Google Scholar 

  48. Goodwin MD, Dobson JE, Sirlin CB, et al (2011) Diagnostic challenges and pitfalls in MR imaging with hepatocyte-specific contrast agents. Radiographics. https://doi.org/10.1148/rg.316115528

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil (funding code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliane Donato Leite Paro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paro, E.D.L., Puchnick, A., Szejnfeld, J. et al. Use of diffusion-weighted imaging in the noninvasive diagnostic of obstructed biliary ducts. Abdom Radiol 46, 268–279 (2021). https://doi.org/10.1007/s00261-020-02636-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-020-02636-x

Keywords

Navigation