Skip to main content

Advertisement

Log in

Recent updates and developments in PET imaging of prostate cancer

  • Special Section : Prostate cancer
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

A number of positron emission tomography (PET) radiotracers have been developed to improve the sensitivity and specificity of imaging for prostate cancer. These radiotracers include the bone-seeking agent Na18F as well as more tumor-specific compounds such as 11C-choline and 18F-fluciclovine. In this review, we will discuss the advantages and disadvantages of these PET radiotracers for the imaging of men with prostate cancer across a range of clinical contexts. We will also touch upon radiotracers in late clinical development that have not gained regulatory approval, including those targeted against prostate-specific membrane antigen (PSMA) and gastrin-releasing peptide receptor (GRPR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. (2018) Global cancer statistics 2018: GLOBOCON estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68(6):394-424.

    PubMed  Google Scholar 

  2. Rowe SP, Macura KJ, Ciarallo A, et al. (2016) Comparison of prostate-specific membrane antigen-based 18F-DCFBC PET/CT to conventional imaging modalities for detection of hormone-naïve and castration-resistant metastatic prostate cancer. J Nucl Med. 57(1):46-53.

    CAS  PubMed  Google Scholar 

  3. Wahl RL, Quint LE, Greenough RL, Meyer CR, White RI, Orringer MB. (1994) Staging of mediastinal non-small cell lung cancer with FDG PET, CT, and fusion images: preliminary prospective evaluation. Radiology. 191(2):371-377.

    CAS  PubMed  Google Scholar 

  4. Jadvar H. (2013) Imaging evaluation of prostate cancer with 18F-fluorodeoxyglucose PET/CT: utility and limitations. Eur J Nucl Med Mol Imaging. 40 Suppl 1:S5-10.

    PubMed  Google Scholar 

  5. Zimmerman ME, Meyer AR, Rowe SP, Gorin MA. (2019) Imaging of prostate cancer with positron emission tomography. 17(8):455-463.

    Google Scholar 

  6. Blau M, Nagler W, Bender MA. (1962) Fluorine-18: a new isotope for bone scanning. J Nucl Med. 3:332-334.

    CAS  PubMed  Google Scholar 

  7. Grant FD, Fahey FH, Packard AB, Davis RT, Alavi A, Treves ST. Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med. 49(1):68–78.

  8. Iagaru A, Mittra E, Dick DW, Gambhir SS. (2012) Prospective evaluation of 99mTc MDP scintigraphy, 18F NaF PET/CT, and 18F FDG PET/CT for detection of skeletal metastases. 14(2):252–259.

  9. Fonager RF, Zacho HD, Langkilde NC, et al. (2017) Diagnostic test accuracy study of 18F-sodium fluoride PET/CT, 99mTc-labelled diphosphonate SPECT/CT, and planar bone scintigraphy for diagnosis of bone metastases in newly diagnosed, high-risk prostate cancer. Am J Nucl Med Mol Imaging. 7(5):218-277.

    PubMed  PubMed Central  Google Scholar 

  10. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 47(2):287-297.

    PubMed  Google Scholar 

  11. Rowe SP, Mana-Ay M, Javadi MS, et al. (2016) PSMA-based detection of prostate cancer bone lesions with 18F-DCFPyL PET/CT: a sensitive alternative to 99mTc-MDP bone scan and Na18F PET/CT? Clin Genitourin Cancer. 14(1):e115-e118.

    PubMed  Google Scholar 

  12. Velez EM, Desai B, Jadvar H. (2019) Treatment Response Assessment of Skeletal Metastases in Prostate Cancer with 18F-NaF PET/CT. Nucl Med Mol Imaging. 53(4):247-252.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kairemo K, Joensuu T. (2015) Radium-223-dichloride in castration resistant metasdatic prostate cancer-preliminary results of the response evaluation using F-18-fluoride PET/CT. Diagnostics. 5(4):413-427.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hardcastle N, Hofman MS, Lee CY, et al. (2019) NaF PET/CT for response assessment of prostate cancer bone metastases treated with single fraction stereotactic ablative body radiotherapy. Radiat Oncol. 14(1):164.

    PubMed  PubMed Central  Google Scholar 

  15. Jacques LB, Jensen TS, Rollins J, Caplan S, Roche JC. (2010) Decision memo for positron emission tomography (NaF-18) to identify bone metastasis of cancer (CAG-00065R). https://www.cms.gov/medicare-coverage-database/details/nca-decision-memo.aspx?NCAId=233.

  16. Beheshti M, Rezaee A, Geinitz H, Loidl W, Pirich C, Langsteger W. (2016) Evaluation of prostate cancer bone metastases with 18F-NaF and 18F-fluorocholine PET/CT. J Nucl Med. 57(Suppl 3):55S-60S.

    CAS  PubMed  Google Scholar 

  17. Uprimny C, Svirydenka A, Fritz J, et al. (2018) Comparison of [68Ga]Ga-PSMA-11 PET/CT with [18F]NaF PET/CT in the evaluation of bone metastases in metastatic prostate cancer patients prior to radionuclide therapy. Eur J Nucl Med Mol Imaging. 45(11):1873-1883.

    CAS  PubMed  Google Scholar 

  18. Zacho HD, Nielsen JB, Afshar-Oromieh A, et al. (2018) Prospective comparison of 68Ga-PSMA PET/CT, 18F-sodium fluoride PET/CT and diffusion weighted-MRI at for the detection of bone metastases in biochemically recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 45(11):1884-1897.

    CAS  PubMed  Google Scholar 

  19. Rowe SP, Xi L, Trock BJ, et al. (2019) Prospective comparison of PET imaging with PSMA-targeted 18F-DCFPyL versus Na18F for bone lesion detection in patients with metastatic prostate cancer. J Nucl Med. Epub ahead of print.

  20. Harmon SA, Mena E, Shih JH, et al. (2018) A comparison of prostate cancer bone metastases on 18F-sodium fluoride and prostate specific membrane antigen (18F-PSMA) PET/CT: discordant uptake in the same lesion. Oncotarget. 9(102):37676-37688.

    PubMed  PubMed Central  Google Scholar 

  21. Harmon SA, Perk T, Lin C, et al. (2017) Quantitative assessment of early [18F]sodium fluoride positron emission tomography/computed tomography response to treatment in men with metastatic prostate cancer to bone. J Clin Oncol. 35(24):2829-2837.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zadra G, Photopoulos C, Loda M. (2013) The fat side of prostate cancer. Biochim Biophys Acta. 1831(10):1518-1532.

    Google Scholar 

  23. Mitchell CR, Lowe VJ, Rangel LJ, Hung JC, Kwon ED, Karnes RJ. (2013) Operational characteristics of 11C-choline positron emission tomography/computerized tomography for prostate cancer with biochemical recurrence after initial treatment. J Urol. 189(4):1308-1313.

    PubMed  Google Scholar 

  24. Mohler JL, Srinivas S, Antonarakis ES, et al. (2019) National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology: Prostate Cancer. https://www.nccn.org/professionals/physician_gls/pdf/prostate_blocks.pdf

  25. Evangelista L, Briganti A, Fanti S, et al. (2016) New clinical indications for 18F/11C-choline, new tracers for positron emission tomography and a promising new hybrid device for prostate cancer staging: a systematic review of the literature. Eur Urol. 70(1):161-175.

    PubMed  Google Scholar 

  26. Van den Bergh L, Lerut E, Haustermans K, et al. (2015) Final analysis of a prospective trial on functional imaging for nodal staging in patients with prostate cancer at high risk for lymph node involvement. Urol Oncol. 33(3):109.e23-109.e31.

    Google Scholar 

  27. Heck MM, Souvatzoglou M, Retz M, et al. (2014) Prospective comparison of computed tomography, diffusion-weighted magnetic resonance imaging and [11C]choline positron emission tomography/computed tomography for preoperative lymph node staging in prostate cancer patients. Eur J Nucl Med Mol Imaging. 41(4):694-701.

    PubMed  Google Scholar 

  28. Krause BJ, Souvatzoglou M, Tuncel M, et al. (2008) The detection rate of [11C]choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging. 35(1):18-23.

    CAS  PubMed  Google Scholar 

  29. Graziani T, Ceci F, Castellucci P, et al. (2016) 11C-choline PET/CT for restaging prostate cancer. Results from 4,426 scans in a single-centre patient series. Eur J Nucl Med Mol Imaging. 43(11):1971–1979.

  30. Giovacchini G, Picchio M, Coradeschi E, et al. (2010) Predictive factors of [11C]choline PET/CT in patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging. 37(2):301-309.

    PubMed  Google Scholar 

  31. Goldstein J, Even-Sapir E, Ben-Haim S, et al. (2017) Does choline PET/CT change the management of prostate cancer patients with biochemical failure? Am J Clin Oncol. 40(3):256-259.

    CAS  PubMed  Google Scholar 

  32. Kitajima K, Murphy RC, Nathan MA, et al. (2014) Detection of recurrent prostate cancer after radical prostatectomy: comparison of 11C-choline PET/CT with pelvic mutliparametric MR imaging with endorectal coil. J Nucl Med. 55(2):223-232.

    CAS  PubMed  Google Scholar 

  33. Nehra A, Parker WP, Haloi R, et al. (2018) Identification of recurrence sites following post-prostatectomy treatment for prostate cancer using 11C-choline positron emission tomography and multiparametric pelvic magnetic resonance imaging. J Urol. 199(3):726-733.

    PubMed  Google Scholar 

  34. Maines F, Caffo O, Donner D, et al. (2016) Serial 18F-choline-PET imaging in patients receiving enzalutamide for metastatic castration-resistant prostate cancer: response assessment and imaging biomarkers. Future Oncol Lond Engl. 12(3):333-342.

    CAS  Google Scholar 

  35. Ceci F, Castellucci P, Graziani T, et al. (2016) 11C-Choline PET/CT in castration-resistant prostate cancer patients treated with docetaxel. Eur J Nucl Med Mol Imaging. 43(1):84-91.

    CAS  PubMed  Google Scholar 

  36. Schwarzenböck SM, Eiber M, Kundt G, et al. (2016) Prospective evaluation of [11C]Choline PET/CT in therapy response assessment of standardized docetaxel first-line chemotherapy in patients with advanced castration refractory prostate cancer. Eur J Nucl Med Mol Imaging. 43(12):2105-2113.

    PubMed  Google Scholar 

  37. Davenport MS, Montgomery JS, Kunju LP, et al. (2020) 18F-choline PET/mpMRI for detection of clinically significant prostate cancer: Part 1. Improved risk stratification for MRI-guided transrectal prostate biopsies. J Nucl Med. 61(3):337–343.

  38. Calabria F, Chiaravalloti A, Schillaci O. (2014) 18F-choline PET/CT pitfalls in image interpretation: an update on 300 examined patients with prostate cancer. Clin Nucl Med. 39(2):122-130.

    PubMed  Google Scholar 

  39. Welle CL, Cullen EL, Peller PJ, et al. (2016) 11C-choline PET/CT in recurrent prostate cancer and nonprostatic neoplastic processes. Radiographics. 36(1):279-292.

    Google Scholar 

  40. Calabria F, Chiaravalloti A, Cicciò C, et al. (2017) PET/CT with 18F-choline: physiological whole bio-distribution in male and female subjects and diagnostic pitfalls on 1000 prostate cancer patients: 18F-choline PET/CT bio-distribution and pitfalls. A southern Italian experience. Nucl Med Biol. 51:40-54.

    CAS  PubMed  Google Scholar 

  41. Oka S, Okudaira H, Yoshida Y, Schuster DM, Goodman MM, Shirakami Y. (2012) Transport mechanisms of trans-1-amino-3-fluoro[1-14C]cyclobutanecarboxylic acid in prostate cancer cells. Nucl Med Biol. 39(1):109-119.

    CAS  PubMed  Google Scholar 

  42. Savir-Baruch B, Lovrec P, Solanki AA, et al. (2019) Fluorine-18-labeled fluciclovine PET/CT in clinical practice: factors affecting the rate of detection of recurrent prostate cancer. AJR Am J Roentgenol. 213(4):851-858.

    PubMed  Google Scholar 

  43. Sathianathen NJ, Butaney M, Konety BR. (2019) The utility of PET-based imaging for prostate cancer biochemical recurrence: a systematic review and meta-analysis. World J Urol. 37(7):1239-1249.

    CAS  PubMed  Google Scholar 

  44. Nanni C, Zanoni L, Pultrone C, et al. (2016) 18F-FACBC (anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid) versus 11C-choline PET/CT in prostate cancer relapse: results of a prospective trial. Eur J Nucl Med Mol Imaging. 43(9):1601-1610.

    CAS  PubMed  Google Scholar 

  45. Akin-Akintayo OO, Jani AB, Odewole O, et al. (2017) Change in salvage radiotherapy management based on guidance with FACBC (fluciclovine) PET/CT in postprostatectomy recurrent prostate cancer. Clin Nucl Med. 42(1):e22-e28.

    PubMed  PubMed Central  Google Scholar 

  46. Schreibmann E, Schuster DM, Rossi PJ, Shelton J, Cooper S, Jani AB. (2016) Image guided planning for prostate carcinomas with incorporation of anti-3-[18F]FACBC (fluciclovine) positron emission tomography: workflow and initial findings from a randomized trial. Int J Radiat Oncol Biol Phys. 96(1):206-213.

    PubMed  PubMed Central  Google Scholar 

  47. Jani AB, Schreibmann E, Rossi PJ, et al. (2017) Impact of 18F-fluciclovine PET on target volume definition for postprostatectomy salvage radiotherapy: initial findings from a randomized trial. J Nucl Med. 58(3):412-418.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Andriole GL, Kostakoglu L, Chau A, et al. (2019) The impact of positron emission tomography with 18F-fluciclovine on the treatment of biochemical recurrence of prostate cancer: results from the LOCATE trial. J Urol. 201(2):322-331.

    PubMed  PubMed Central  Google Scholar 

  49. Ulaner GA, Goldman DA, Gönen M, et al. (2016) Initial results of a prospective clinical trial of 18F-fluciclovine PET/CT in newly diagnosed invasive ductal and invasive lobular breast cancers. J Nucl Med. 57(9):1350-1356.

    CAS  PubMed  Google Scholar 

  50. Kondo A, Ishii H, Aoki S, et al. (2016) Phase IIa clinical study of [18F]fluciclovine: efficacy and safety of a new PET tracer for brain tumors. Ann Nucl Med. 30(9):608-618.

    CAS  PubMed  Google Scholar 

  51. Turkbey B, Mena E, Shih J, et al. (2014) Localized prostate cancer detection with 18F FACBC PET/CT: comparison with MR imaging and histopathologic analysis. Radiology. 270(3):849-856.

    PubMed  Google Scholar 

  52. Schuster DM, Nanni C, Fanti S, et al. (2014) Anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid: physiologic uptake patterns, incidental findings, and variants that may simulate disease. J Nucl Med. 55(12):1986-1992.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Perera M, Papa N, Roberts M, et al. (2019) Gallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer-updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis. Eur Urol. Epub ahead of print.

  54. Gorin MA, Rowe SP, Patel HD, et al. (2018) Prostate specific membrane antigen targeted 18F-DCFPyL positron emission tomography/computerized tomography for the preoperative staging of high risk prostate cancer: results of a prospective, phase II, single center study. J Urol. 199(1):126-132.

    PubMed  Google Scholar 

  55. Corfield J, Perera M, Bolton D, Lawrentschuk N. (2018) 68Ga-prostate specific membrane antigen (PSMA) positron emission tomography (PET) for primary staging of high-risk prostate cancer: a systematic review. World J Urol. 36(4):519-527.

    PubMed  Google Scholar 

  56. Park SY, Zacharias C, Harrison C, et al. (2018) Gallium 68 PSMA-11 PET/MR imaging in patients with intermediate- or high-risk prostate cancer. Radiology. 288(2):495-505.

    PubMed  Google Scholar 

  57. Eiber M, Weirich G, Holzapfel K, et al. (2016) Simultaneous 68Ga-PSMA HBED-CC PET/MRI improves the localization of primary prostate cancer. Eur Urol. 70(5):829-836.

    CAS  PubMed  Google Scholar 

  58. Rowe SP, Campbell SP, Mana-Ay M, et al. (2019) Prospective evaluation of PSMA-targeted 18F-DCFPyL PET/CT in men with biochemical failure after radical prostatectomy for prostate cancer. J Nucl Med. Epub ahead of print.

  59. Song H, Harrison C, Duan H, et al. (2019) Prospective evaluation in an academic center of 18F-DCFPyL PET/CT in biochemically recurrent prostate cancer: a focus on localizing disease and changes in management. J Nucl Med. Epub ahead of print.

  60. Fendler WP, Calais J, Eiber M, et al. (2019) Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trial. JAMA Oncol. 5(6):856-863.

    PubMed  PubMed Central  Google Scholar 

  61. Calais J, Ceci F, Eiber M, et al. (2019) 18F-fluciclovine PET-CT and 68Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: a prospective, single-centre, single-arm, comparative imaging trial. Lancet Oncol. 20(9):1286-1294.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sheikhbahaei S, Afshar-Oromieh A, Eiber M, et al. (2017) Pearls and pitfalls in clinical interpretation of prostate-specific membrane antigen (PSMA)-targeted PET imaging. Eur J Nucl Med Mol Imaging. 44(12):2117-2136.

    PubMed  Google Scholar 

  63. Sheikhbahaei S, Werner RA, Solnes LB, et al. (2019) Prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer: an update on important pitfalls. Semin Nucl Med. 49(4):255-270.

    PubMed  Google Scholar 

  64. Salas Fragomeni RA, Amir T, Sheikhbahaei S, et al. (2018) Imaging of nonprostate cancers using PSMA-targeted radiotracers: rationale, current state of the field, and a call to arms. J Nucl Med. 59(6):871-877.

    PubMed  Google Scholar 

  65. Fanti S, Minozzi S, Morigi JJ, et al. (2017) Development of standardized image interpretation for 68Ga-PSMA PET/CT to detect prostate cancer recurrent lesions. Eur J Nucl Med Mol Imaging. 44(10):1622-1635.

    CAS  PubMed  Google Scholar 

  66. Rowe SP, Pienta KJ, Pomper MG, Gorin MA. (2018) Proposal for a structured reporting system for prostate-specific membrane antigen-targeted PET imaging: PSMA-RADS Version 1.0. J Nucl Med. 59(3):479–485.

  67. Eiber M, Herrmann K, Calais J, et al. (2018) Prostate cancer molecular imaging standardized evaluation (PROMISE): proposed miTNM classification for the interpretation of PSMA-ligand PET/CT. J Nucl Med. 59(3):469-478.

    PubMed  Google Scholar 

  68. Ahmadzadehfar H, Rahbar K, Essler M, Biersack HJ. (2020) PSMA-based theranostics: A step-by-step practical approach to diagnosis and therapy for mCRPC patients. Semin Nucl Med. 50(1):98-109.

    PubMed  Google Scholar 

  69. Tosoian JJ, Gorin MA, Rowe SP, et al. (2017) Correlation of PSMA-targeted 18F-DCFPyL PET/CT findings with immunohistochemical and genomic data in a patient with metastatic neuroendocrine prostate cancer. Clin Genitourin Cancer. 15(1):e65-e68.

    PubMed  Google Scholar 

  70. Kähkӧnen E, Jambor I, Kemppainen J, et al. (2013) In vivo imaging of prostate cancer using [68Ga]-labeled bombesin analog BAY86-7548. Clin Cancer Res. 19(19):5434-5443.

    Google Scholar 

  71. Zhang J, Niu G, Fan X, et al. (2018) PET using a GRPR antagonist 68Ga-RM26 in healthy volunteers and prostate cancer patients. J Nucl Med. 59(6):922-928.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Dalm SU, Bakker IL, de Blois E, et al. (2017). 68Ga/177Lu-NeoBOMB1, a novel radiolabeled GRPR antagonist for theranostic use in oncology. 58(2):293–299.

  73. Wieser G, Popp I, Christian Rischke H, et al. (2017) Diagnosis of recurrent prostate cancer with PET/CT imaging using the gastrin-releasing peptide receptor antagonist 68Ga-RM2: preliminary results in patients with negative or inconclusive [18F]fluoroethylcholine-PET/CT. Eur J Nucl Med Mol Imaging. 44(9):1463-1472.

    CAS  PubMed  Google Scholar 

  74. Minamimoto R, Sonni I, Hancock S, et al. (2018) Prospective evaluation of 68Ga-RM2 PET/MRI in patients with biochemical recurrence of prostate cancer and negative findings on conventional imaging. J Nucl Med. 59(5):803-808.

    CAS  PubMed  Google Scholar 

  75. Minamimoto R, Hancock S, Schneider B, et al. (2016) Pilot comparison of 68Ga-RM2 PET and 68Ga-PSMA-11 PET in patients with biochemically recurrent prostate cancer. J Nucl Med. 57(4):557-562.

    CAS  PubMed  Google Scholar 

  76. Kurth J, Krause BJ, Schwarzenböck SM, Bergner C, Hakenberg OW, Heuschkel M. (2020) First-in-human dosimetry of gastrin-releasing peptide receptor antagonist [177Lu]Lu-RM2: a radiopharmaceutical for the treatment of metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 47(1):123-135.

    CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven P. Rowe.

Ethics declarations

Disclosures

MGP is a co-inventor on a U.S. patent covering 18F-DCFPyL and as such is entitled to a portion of any licensing fees and royalties generated by this technology. This arrangement has been reviewed and approved by the Johns Hopkins University in accordance with its conflict-of-interest policies. SPR is a consultant to Progenics Pharmaceuticals, the licensee of 18F-DCFPyL. MAG has served as a consultant to Progenics Pharmaceuticals. SPR, MAG, and MGP receive research funding from Progenics Pharmaceuticals. There are no other potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rowe, S.P., Johnson, G.B., Pomper, M.G. et al. Recent updates and developments in PET imaging of prostate cancer. Abdom Radiol 45, 4063–4072 (2020). https://doi.org/10.1007/s00261-020-02570-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-020-02570-y

Keywords

Navigation