Skip to main content
Log in

Superparamagnetic iron-oxide-enhanced diffusion-weighted magnetic resonance imaging for the diagnosis of intrapancreatic accessory spleen

  • Pancreas
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the diagnostic performance of superparamagnetic iron-oxide (SPIO)-enhanced diffusion-weighted image (DWI) for distinguishing an intrapancreatic accessory spleen from pancreatic tumors.

Materials and methods

Twenty-six cases of intrapancreatic accessory spleen and nine cases of pancreatic tail tumors [neuroendocrine tumor (n = 8) and pancreatic adenocarcinoma (n = 1)] were analyzed. Two blind reviewers retrospectively reviewed the SPIO-enhanced magnetic resonance imaging (MRI) scans. The lesion visibility grades were compared and the diagnostic performance of SPIO-enhanced DWI was compared to those of SPIO-enhanced T2WI and T2*WI with the use of a receiver operating characteristic (ROC) analysis.

Results

The grade of lesion visibility was the highest on DWI [mean ± standard deviation (SD): 2.8 ± 0.3] followed by T2WI (2.3 ± 0.7, p < 0.001) and T2*WI (2.1 ± 0.7, p < 0.0001). Reviewers 1 and 2 correctly characterized the presence or absence of SPIO uptake in 34 of 35 cases (97.1%) on DWI, 24 (68.6%) and 25 (71.4%) cases on T2WI, respectively, and 16 (45.7%) and 17 (48.6%) cases on T2*WI. The area under the ROC curve (AUC) of DWI was 0.974 and 0.989 for reviewers 1 and 2, respectively. For Reviewer 1, the AUC of DWI was significantly higher than that of T2*WI (0.756, p < 0.01), although it was not significantly different from that of T2WI (0.868, p = 0.0857). For Reviewer 2, the AUC of DWI was significantly higher than those of T2WI (0.846, p < 0.05) and T2*WI (0.803, p < 0.01).

Conclusion

The diagnostic performance of SPIO-enhanced DWI was better than those of SPIO-enhanced T2*WI and T2WI for the diagnosis of intrapancreatic accessory spleen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Halpert B, Gyorkey F. Lesions observed in accessory spleens of 311 patients. Am J Clin Pathol. 1959 Aug;32(2):165-168.

    Article  CAS  PubMed  Google Scholar 

  2. Harris GN, Kase DJ, Bradnock H, Mckinley MJ. Accessory spleen causing a mass in the tail of the pancreas: MR imaging findings. AJR Am J Roentgenol. 1994 Nov;163(5):1120-1.

    Article  CAS  PubMed  Google Scholar 

  3. Churei H, Inoue H, Nakajo M. Intrapancreatic accessory spleen: case report. Abdom Imaging. 1998 Mar-Apr;23(2):191-3.

  4. Rufini V, Inzani F, Stefanelli A, et al. The Accessory Spleen Is an Important Pitfall of 68 Ga-DOTANOC PET/CT in the Workup for Pancreatic Neuroendocrine Neoplasm. Pancreas. 2017 Feb;46(2):157-163.

    Article  PubMed  Google Scholar 

  5. Ota T, Tei M, Yoshioka A, et al. Intrapancreatic accessory spleen diagnosed by technetium-99 m heat-damaged red blood cell SPECT. J Nucl Med. 1997 Mar;38(3):494-5.

    CAS  PubMed  Google Scholar 

  6. Ishigami K, Hammett B, Obuchi M, et al. Imaging of an accessory spleen presenting as a slow-growing mass in the transplanted pancreas. AJR Am J Roentgenol. 2004 Aug;183(2):405-7.

    Article  PubMed  Google Scholar 

  7. Boraschi P1, Donati F, Volpi A, Campori G. Intrapancreatic accessory spleen: diagnosis with RES-specific contrast-enhanced MRI. AJR Am J Roentgenol. 2005 May;184(5):1712-3.

  8. Herédia V, Altun E, Bilaj F, Ramalho M, Hyslop BW, Semelka RC. Gadolinium- and superparamagnetic-iron-oxide-enhanced MR findings of intrapancreatic accessory spleen in five patients. Magn Reson Imaging. 2008 Nov;26(9):1273-8.

    Article  CAS  PubMed  Google Scholar 

  9. Kim SH, Lee JM, Han JK, et al. MDCT and superparamagnetic iron oxide (SPIO)-enhanced MR findings of intrapancreatic accessory spleen in seven patients. Eur Radiol. 2006 Sep;16(9):1887-97.

    Article  PubMed  Google Scholar 

  10. Kang BK, Kim JH, Byun JH, et al. Diffusion-weighted MRI: usefulness for differentiating intrapancreatic accessory spleen and small hypervascular neuroendocrine tumor of the pancreas. Acta Radiol. 2014 Dec;55(10):1157-65.

    Article  PubMed  Google Scholar 

  11. Jang KM, Kim SH, Lee SJ, Park MJ, Lee MH, Choi D. Differentiation of an intrapancreatic accessory spleen from a small (<3-cm) solid pancreatic tumor: value of diffusion-weighted MR imaging. Radiology. 2013 Jan;266(1):159-67.

    Article  PubMed  Google Scholar 

  12. Yoshikawa T, Kawamitsu H, Mitchell DG, et al. ADC measurement of abdominal organs and lesions using parallel imaging technique. AJR Am J Roentgenol. 2006 Dec;187(6):1521-30.

    Article  PubMed  Google Scholar 

  13. Rosenkrantz AB, Oei M, Babb JS, Niver BE, Taouli B. Diffusion-weighted imaging of the abdomen at 3.0 Tesla: image quality and apparent diffusion coefficient reproducibility compared with 1.5 Tesla. J Magn Reson Imaging. 2011 Jan;33(1):128-35.

  14. Nishie A, Tajima T, Ishigami K, et al. Detection of hepatocellular carcinoma (HCC) using superparamagnetic iron oxide (SPIO)-enhanced MRI: Added value of diffusion-weighted imaging (DWI). J Magn Reson Imaging. 2010 Feb;31(2):373-382.

    Article  PubMed  Google Scholar 

  15. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452-458.

    Article  CAS  PubMed  Google Scholar 

  16. Tanimoto A, Oshio K, Suematsu M, Pouliquen D, Stark DD. Relaxation effects of clustered particles. J Magn Reson Imaging. 2001 Jul;14(1):72-7.

    Article  CAS  PubMed  Google Scholar 

  17. Gomi T, Nagamoto M, Tsunoo M, Terada S, Terada H, Kohda E. Evaluation of the changes in signals from the spleen using ferucarbotran. Radiat Med. 2007 Apr;25(3):135-8.

    Article  PubMed  Google Scholar 

  18. Dromain C, Déandréis D, Scoazec JY, et al. Imaging of neuroendocrine tumors of the pancreas. Diagn Interv Imaging. 2016 Dec;97(12):1241-1257.

    Article  CAS  PubMed  Google Scholar 

  19. Motosugi U, Yamaguchi H, Ichikawa T, et al. Epidermoid cyst in intrapancreatic accessory spleen: radiological findings including superparamagnetic iron oxide-enhanced magnetic resonance imaging. J Comput Assist Tomogr. 2010 Mar-Apr;34(2):217-22.

  20. Makino Y, Imai Y, Fukuda K, et al. Sonazoid-enhanced ultrasonography for the diagnosis of an intrapancreatic accessory spleen: a case report. J Clin Ultrasound. 2011 Jul;39(6):344-7.

    Article  PubMed  Google Scholar 

  21. Kim SH, Lee JM, Lee JY, Han JK, Choi BI. Contrast-enhanced sonography of intrapancreatic accessory spleen in six patients. AJR Am J Roentgenol. 2007 Feb;188(2):422-8.

    Article  PubMed  Google Scholar 

  22. Ishigami K, Abu-Yousef DM, Kao SC, Abu-Yousef MM. Comparison of 2 oral ultrasonography contrast agents: simethicone-coated cellulose and simethicone-water rotation in improving pancreatic visualization. Ultrasound Q. 2014 Jun;30(2):135-8.

    Article  PubMed  Google Scholar 

  23. Tatsas AD, Owens CL, Siddiqui MT, Hruban RH, Ali SZ. Fine-needle aspiration of intrapancreatic accessory spleen: cytomorphologic features and differential diagnosis. Cancer Cytopathol. 2012 Aug 25;120(4):261-268.

    Article  PubMed  Google Scholar 

  24. Saunders TA, Miller TR, Khanafshar E. Intrapancreatic accessory spleen: utilization of fine needle aspiration for diagnosis of a potential mimic of a pancreatic neoplasm. J Gastrointest Oncol. 2016 Apr;7(Suppl 1):S62-5.

    PubMed  PubMed Central  Google Scholar 

  25. Conway AB, Cook SM, Samad A, Attam R, Pambuccian SE. Large platelet aggregates in endoscopic ultrasound-guided fine-needle aspiration of the pancreas and peripancreatic region: a clue for the diagnosis of intrapancreatic or accessory spleen. Diagn Cytopathol. 2013 Aug;41(8):661-72.

    Article  PubMed  Google Scholar 

  26. Kato S, Mori H, Zakimi M, et al. Epidermoid Cyst in an Intrapancreatic Accessory Spleen: Case Report and Literature Review of the Preoperative Imaging Findings. Intern Med. 2016;55(23):3445-3452.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kim YS, Cho JH. Rare nonneoplastic cysts of pancreas. Clin Endosc. 2015 Jan;48(1):31-38.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang YX. Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging. World J Gastroenterol. 2015 Dec 21;21(47):13400-13402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bashir MR1, Bhatti L, Marin D, Nelson RC. Emerging applications for ferumoxytol as a contrast agent in MRI. J Magn Reson Imaging. 2015 Apr;41(4):884-898.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kousei Ishigami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishigami, K., Nishie, A., Nakayama, T. et al. Superparamagnetic iron-oxide-enhanced diffusion-weighted magnetic resonance imaging for the diagnosis of intrapancreatic accessory spleen. Abdom Radiol 44, 3325–3335 (2019). https://doi.org/10.1007/s00261-019-02189-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-019-02189-8

Keywords

Navigation