Skip to main content

Advertisement

Log in

Algorithmic approach to solid adnexal masses and their mimics: utilization of anatomic relationships and imaging features to facilitate diagnosis

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Solid adnexal masses, while less common than their cystic counterparts, may present a challenge for radiologists given the wide range of histologic entities that occur in this region. Pelvic masses, especially when large, can seem overwhelming at first but application of an algorithmic approach allows for more confident assessment. This approach focuses first on the use of anatomic relationships and interactions of various pelvic structures to localize the mass’ origin. For instance, the directionality of ureteral displacement can suggest if a mass is intra or extraperitoneal. Then, key discriminating imaging features, such as the presence of fat, hypervascularity, or low T2 signal on magnetic resonance imaging (MRI) can be applied to further narrow the list of diagnostic possibilities. Entities such as leiomyomas, nerve sheath tumors, congenital uterine anomalies, and vascular abnormalities (ovarian torsion or iliac vessel aneurysm) in particular are often accurately characterized with sonography and/or MRI. For solid adnexal masses in which a definitive diagnosis by imaging is not reached, information germane to clinicians regarding further management can still be provided, principally with regard to surgical vs. nonsurgical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ronai PM (1993) The fourth declension. Am J Roentgenol 161:1064

    Article  CAS  Google Scholar 

  2. Foshager MC, Hood LL, Walsh JW (1996) Masses simulating gynecologic diseases at CT and MR imaging. Radiographics 16:1085–1099

    Article  CAS  PubMed  Google Scholar 

  3. Cunat JS, Goldman SM (1986) Extrinsic displacement of the ureter. Semin Roentgenol 21:188–200

    Article  CAS  PubMed  Google Scholar 

  4. Van Holsbeke C, Van Belle V, Leone FP, et al. (2010) Prospective external validation of the ‘ovarian crescent sign’ as a single ultrasound parameter to distinguish between benign and malignant adnexal pathology. Ultrasound Obstet Gynecol 36:81–87

    Article  PubMed  Google Scholar 

  5. Asayama Y, Yoshimitsu K, Aibe H, et al. (2006) MDCT of the gonadal veins in females with large pelvic masses: value in differentiating ovarian versus uterine origin. Am J Roentgenol 186:440–448

    Article  Google Scholar 

  6. Saksouk FA, Johnson SC (2004) Recognition of the ovaries and ovarian origin of pelvic masses with CT. Radiographics 24(Suppl 1):S133–S146

    Article  PubMed  Google Scholar 

  7. Okamoto D, Asayama Y, Yoshimitsu K, et al. (2005) Exophytic colon cancer mimicking an ovarian tumor: the value of evaluation of the venous anatomy on MDCT. Comput Med Imaging Graph 29:1–4

    Article  Google Scholar 

  8. Kim SH, Sim JS, Seong CK (2001) Interface vessels on color/power Doppler US and MRI: a clue to differentiate subserosal uterine myomas from extrauterine tumors. J Comput Assist Tomogr 25:36–42

    Article  CAS  PubMed  Google Scholar 

  9. Timmerman D, Valentin L, Bourne TH, et al. (2000) Terms, definitions, and measurements to describe the sonographic features of adnexal tumors: a consensus opinion from the International Ovarian Tumor Analysis (IOTA) Group. Ultrasound Obstet Gynecol 16:500–505

    Article  CAS  PubMed  Google Scholar 

  10. Granberg S, Norstram A, Wikland M (1990) Tumors in the lower pelvis as imaged by vaginal sonography. Gynecol Oncol 37:224–229

    Article  CAS  PubMed  Google Scholar 

  11. Brown DL, Dudiak KM, Laing FC (2010) Adnexal masses: US characterization and reporting. Radiology 254:342–354

    Article  PubMed  Google Scholar 

  12. Liu JH, Zanotti KM (2011) Management of the adnexal mass. Obstet Gynecol 117:1413–1428

    Article  PubMed  Google Scholar 

  13. Thomassin-Naggara I, Aubert E, Rockall A, et al. (2013) Adnexal masses: development and preliminary validation of an MR imaging scoring system. Radiology 267:432–443

    Article  PubMed  Google Scholar 

  14. Wolfman DJ, Allison SJ, Ascher SM (2011) Imaging of benign uterine conditions. Appl Radiol 40:8–15

    Google Scholar 

  15. Shinagare AB, Meylaerts LJ, Laury AR, Mortele KJ (2012) MRI features of ovarian fibroma and fibrothecoma with histopathologic correlation. Am J Roentgenol 198:W296–W303

    Article  Google Scholar 

  16. Wang S, Johnson S (2012) Prediction of benignity of solid adnexal masses. Arch Gynecol Obstet 285:721–726

    Article  PubMed  Google Scholar 

  17. Adusumilli S, Hussain HK, Caoili EM, et al. (2006) MRI of sonographically indeterminate adnexal masses. Am J Roentgenol 187:732–740

    Article  Google Scholar 

  18. Spencer JA, Ghattamaneni S (2010) MR imaging of the sonographically indeterminate adnexal mass. Radiology 256:677–694

    Article  PubMed  Google Scholar 

  19. Anthoulakis C, Nikoloudis N (2013) Pelvic MRI as the “gold standard” in the subsequent evaluation of ultrasound-indeterminate adnexal lesions: a systematic review. Gynecol Oncol. Advance online publication (Epub ahead of print). doi:10.1016/j.ygyno.2013.10.022

  20. Thomassin-Naggara I, Toussaint I, Perrot N, et al. (2011) Characterization of complex adnexal masses: value of adding perfusion and diffusion weighted MR imaging to conventional MR imaging. Radiology 258:793–803

    Article  PubMed  Google Scholar 

  21. Carter JS, Koopmeiners JS, Kuehn-Hajder JE, et al. (2013) Quantitative multiparametric MRI of ovarian cancer. J Magn Reson Imaging 38:1501–1509

    Article  PubMed  Google Scholar 

  22. Spencer JA, Gore RM (2011) The adnexal incidentaloma: a practical approach to management. Cancer Imaging 11:48–51

    Article  PubMed Central  PubMed  Google Scholar 

  23. Slanetz PJ, Hahn PF, Hall DA, et al. (1997) The frequency and significance of adnexal lesions incidentally revealed by CT. Am J Roentgenol 168:647–650

    Article  CAS  Google Scholar 

  24. Santosa JT, Robinson A, Suganda S, et al. (2014) Computed tomography adnexal mass score to estimate risk for ovarian cancer. Arch Gynecol Obstet 289:595–600

    Article  Google Scholar 

  25. Lee SI (2006) Radiological reasoning: imaging characterization of bilateral adnexal masses. Am J Roentgenol 187:S460–S466

    Article  Google Scholar 

  26. Barney SP, Muller CY, Bradshaw KD (2008) Pelvic masses. Med Clin N Am 92:1143–1161

    Article  PubMed  Google Scholar 

  27. Vargas HA, Barrett T, Sala E (2013) MRI of ovarian masses. J Magn Reson Imaging 37:265–281

    Article  PubMed  Google Scholar 

  28. Jung SE, Lee JM, Rha SE, et al. (2002) CT and MR imaging of ovarian tumors with emphasis on differential diagnosis. Radiographics 22:1305–1325

    Article  PubMed  Google Scholar 

  29. Troiano RN, Lazzarini KM, Scoutt LM, et al. (1997) Fibroma and fibrothecoma of the ovary: MR imaging findings. Radiology 204:795–798

    Article  CAS  PubMed  Google Scholar 

  30. Tanaka YO, Tsunoda H, Kitagawa Y, et al. (2004) Functioning ovarian tumors: direct and indirect findings at MR imaging. Radiographics 24:S147–S166

    Article  PubMed  Google Scholar 

  31. Yen P, Khong K, Lamba R, Corwin MT, Gersovich EO (2013) Ovarian fibromas and fibrothecomas: sonographic correlation with computed tomography and magnetic resonance imaging: a 5-year single-institution experience. J Ultrasound Med 32:13–18

    PubMed  Google Scholar 

  32. Bazot M, Ghossain MA, Buy JN, et al. (1993) Fibrothecomas of the ovary: CT and US findings. J Comput Assist Tomogr 17:754–759

    Article  CAS  PubMed  Google Scholar 

  33. Jung SE, Rha SE, Lee JM, et al. (2005) CT and MRI findings of sex cord-stromal tumor of the ovary. Am J Roentgenol 185:207–215

    Article  Google Scholar 

  34. Okajima Y, Matsuo Y, Tamura A, et al. (2010) Intracellular lipid in ovarian thecomas detected by dual-echo chemical shift magnetic resonance imaging: report of 2 cases. J Comput Assist Tomogr 34:223–225

    Article  PubMed  Google Scholar 

  35. Zhang H, Zhang GF, Wang TP, Zhang H (2013) Value of 3T diffusion-weighted imaging in discriminating thecoma and fibrothecoma from other solid adnexal masses. J Ovarian Res 6:58

    Article  PubMed Central  PubMed  Google Scholar 

  36. Roth LM, Anderson MC, Govan AD, et al. (1981) Sertoli–Leydig cell tumors: a clinicopathologic study of 34 cases. Cancer 48:187–197

    Article  CAS  PubMed  Google Scholar 

  37. Outwater EK, Siegelman ES, Hung JL (2001) Ovarian teratomas: tumor types and imaging characteristics. Radiographics 21:475–490

    Article  CAS  PubMed  Google Scholar 

  38. Ikeuchi T, Koyama T, Tamai K, et al. (2012) CT and MRI features of struma ovarii. Abdom Imaging 37:904–910

    Article  PubMed  Google Scholar 

  39. Brammer HM III, Buck JL, Hayes WS, Sheth S, Tavassoli FA (1990) From the archives of the AFIP. Malignant germ cell tumors of the ovary: radiologic–pathologic correlation. Radiographics 10:715–724

    Article  PubMed  Google Scholar 

  40. Ueno T, Tanaka YO, Nagata M, et al. (2004) Spectrum of germ cell tumors: from head to toe. Radiographics 24:387–404

    Article  PubMed  Google Scholar 

  41. Poncelet E, Delpierre C, Kerdraon O, et al. (2013) Value of dynamic contrast-enhanced MRI for tissue characterization of ovarian teratomas: correlation with histopathology. Clin Radiol 68:909–916

    Article  CAS  PubMed  Google Scholar 

  42. Koonings PP, Campbell K, Mishell DR Jr, Grimes DA (1989) Relative frequency of primary ovarian neoplasms: a 10-year review. Obstet Gynecol 74(6):921–926

    CAS  PubMed  Google Scholar 

  43. Woodward PJ, Hosseinzadeh K, Saenger JS (2004) From the archives of the AFIP: radiologic staging of ovarian carcinoma with pathologic correlation. Radiographics 24:225–246

    Article  PubMed  Google Scholar 

  44. Moon WJ, Koh BH, Kim SK, et al. (2000) Brenner tumor of the ovary: CT and MR findings. J Comput Assist Tomogr 24:72–76

    Article  CAS  PubMed  Google Scholar 

  45. Brown DL, Zou KH, Tempany CM, et al. (2001) Primary versus secondary ovarian malignancy: imaging findings of adnexal masses in the Radiology Diagnostic Oncology Group Study. Radiology 219:213–218

    Article  CAS  PubMed  Google Scholar 

  46. Khashper A, Addley HC, Abourokbah N, et al. (2012) T2-hypointense adnexal lesions: an imaging algorithm. Radiographics 32:1047–1064

    Article  PubMed  Google Scholar 

  47. Weinreb JC, Barkoff ND, Megibow A, Demopoulos R (1990) The value of MR imaging in distinguishing leiomyomas from other solid pelvic masses when sonography is indeterminate. Am J Roentgenol 154:295–299

    Article  CAS  Google Scholar 

  48. Ueda H, Togashi K, Konishi I, et al. (1999) Unusual appearances of uterine leiomyomas: MR imaging findings and their histopathologic backgrounds. Radiographics 19:S131–S145

    Article  PubMed  Google Scholar 

  49. Reynolds DL Jr, Jacobson JA, Inampudi P, et al. (2004) Sonographic characteristics of peripheral nerve sheath tumors. Am J Roentgenol 182:741–744

    Article  Google Scholar 

  50. Lin J, Martel W (2001) Cross-sectional imaging of peripheral nerve sheath tumors: characteristic signs on CT, MR imaging, and sonography. Am J Roentgenol 176:75–82

    Article  CAS  Google Scholar 

  51. Miettinen M, Sobin LH (2001) Gastrointestinal stromal tumors in the appendix: a clinicopathologic and immunohistochemical study of four cases. Am J Surg Pathol 25:1433–1437

    Article  CAS  PubMed  Google Scholar 

  52. Levy AD, Remotti HE, Thompson WM, Sobin LH, Miettinen M (2003) Gastrointestinal tumors: radiologic features with pathologic correlation. Radiographics 23:283–304

    Article  PubMed  Google Scholar 

  53. Elsayes KM, Narra VR, Leyendecker JR, et al. (2005) MRI of adrenal and extraadrenal pheochromocytoma. Am J Roentgenol 184:860–867

    Article  Google Scholar 

  54. Kuscu M, Oktem E, Eroglu D, et al. (2005) Pelvic retroperitoneal paraganglioma mimicking an ovarian mass. Eur J Gynaecol Oncol 26:219–220

    CAS  PubMed  Google Scholar 

  55. Blake MA, Kalra MK, Maher MM, et al. (2004) Pheochromocytoma: an imaging chameleon. Radiographics 24:S87–S99

    Article  PubMed  Google Scholar 

  56. Gleason BC, Hornick JL (2008) Inflammatory myofibroblastic tumours: where are we now? J Clin Pathol 61:428–437

    Article  CAS  PubMed  Google Scholar 

  57. Park SB, Cho KS, Kim JK, et al. (2008) Inflammatory pseudotumor (myoblastic tumor) of the genitourinary tract. Am J Roentgenol 191:1255–1262

    Article  Google Scholar 

  58. Venkataraman S, Semelka RC, Braga L, Danet IM, Woosley JT (2003) Inflammatory myofibroblastic tumor of the hepatobiliary system: report of MR imaging appearance in four patients. Radiology 227:758–763

    Article  PubMed  Google Scholar 

  59. Graif M, Itzchak Y (1998) Sonographic evaluation of ovarian torsion in childhood and adolescence. Am J Roentgenol 150:647–649

    Article  Google Scholar 

  60. Chang HC, Bhatt S, Dogra VS (2008) Pearls and pitfalls in diagnosis of ovarian torsion. Radiographics 28:1355–1368

    Article  PubMed  Google Scholar 

  61. Rha SE, Byun JY, Jung SE, et al. (2002) CT and MR imaging features of adnexal torsion. Radiographics 22:283–294

    Article  PubMed  Google Scholar 

  62. Behr SC, Courtier JL, Qayyum A (2012) Imaging of mullerian duct anomalies. Radiographics 32:E233–E250

    Article  PubMed  Google Scholar 

  63. Khati NJ, Frazier AA, Brindle KA (2012) The unicornuate uterus and its variants: clinical presentation, imaging findings, and associated complications. J Ultrasound Med 31:319–331

    PubMed  Google Scholar 

  64. Junqueira BL, Allen LM, Spitzer RF, et al. (2009) Mullerian duct anomalies and mimics in children and adolescents: correlative intraoperative assessment with clinical imaging. Radiographics 29:1085–1103

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

All of the authors have no competing interests and have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Reiter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiter, M.J., Schwope, R.B. & Lisanti, C.J. Algorithmic approach to solid adnexal masses and their mimics: utilization of anatomic relationships and imaging features to facilitate diagnosis. Abdom Imaging 39, 1284–1296 (2014). https://doi.org/10.1007/s00261-014-0163-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-014-0163-4

Keywords

Navigation