Skip to main content

Advertisement

Log in

An ultra-small organic dye nanocluster for enhancing NIR-II imaging-guided surgery outcomes

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The accuracy of surgery for patients with solid tumors can be greatly improved through fluorescence-guided surgery (FGS). However, existing FGS technologies have limitations due to their low penetration depth and sensitivity/selectivity, which are particularly prevalent in the relatively short imaging window (< 900 nm). A solution to these issues is near-infrared-II (NIR-II) FGS, which benefits from low autofluorescence and scattering under the long imaging window (> 900 nm). However, the inherent self-assembly of organic dyes has led to high accumulation in main organs, resulting in significant background signals and potential long-term toxicity.

Methods

We rationalize the donor structure of donor–acceptor-donor-based dyes to control the self-assembly process to form an ultra-small dye nanocluster, thus facilitating renal excretion and minimizing background signals.

Results

Our dye nanocluster can not only show clear vessel imaging, tumor and tumor sentinel lymph nodes definition, but also achieve high-performance NIR-II imaging-guided surgery of tumor-positive sentinel lymph nodes.

Conclusion

In summary, our study demonstrates that the dye nanocluster-based NIR-II FGS has substantially improved outcomes for radical lymphadenectomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data relevant to the study are included in the article or uploaded as supplementary information.

References

  1. Mieog JSD, Achterberg FB, Zlitni A, Hutteman M, Burggraaf J, Swijnenburg RJ, et al. Fundamentals and developments in fluorescence-guided cancer surgery. Nat Rev Clin Oncol. 2022;19(1):9–22.

    Article  CAS  PubMed  Google Scholar 

  2. Hu S, Kang H, Baek Y, El Fakhri G, Kuang A, Choi HS. Real-time imaging of brain tumor for image-guided surgery. Adv Healthc Mater. 2018;7(16):e1800066.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Luo X, Hu D, Gao D, Wang Y, Chen X, Liu X, et al. Metabolizable near-infrared-II nanoprobes for dynamic imaging of deep-seated tumor-associated macrophages in pancreatic cancer. ACS Nano. 2021;15(6):10010–24.

    Article  CAS  PubMed  Google Scholar 

  4. Miao Q, Xie C, Zhen X, Lyu Y, Duan H, Liu X, et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat Biotechnol. 2017;35(11):1102–10.

    Article  CAS  PubMed  Google Scholar 

  5. Zhong D, Chen W, Xia Z, Hu R, Qi Y, Zhou B, et al. Aggregation-induced emission luminogens for image-guided surgery in non-human primates. Nat Commun. 2021;12(1):6485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hong G, Antaris AL, Dai HJNbe. Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng. 2017;1:0010.

    Article  CAS  Google Scholar 

  7. Zhu S, Tian R, Antaris AL, Chen X, Dai HJAM. Near-infrared-II molecular dyes for cancer imaging and surgery. Adv Mater. 2019;31(24):1900321.

    Article  Google Scholar 

  8. Zhu S, Yung BC, Chandra S, Niu G, Antaris AL, Chen XJT. Near-infrared-II (NIR-II) bioimaging via off-peak NIR-I fluorescence emission. Theranostics. 2018;8(15):4141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fan Y, Wang P, Lu Y, Wang R, Zhou L, Zheng X, et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat Nanotechnol. 2018;13(10):941–6.

    Article  CAS  PubMed  Google Scholar 

  10. Carr JA, Franke D, Caram JR, Perkinson CF, Saif M, Askoxylakis V, et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc Natl Acad Sci. 2018;115(17):4465–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Feng Z, Tang T, Wu T, Yu X, Zhang Y, Wang M, et al. Perfecting and extending the near-infrared imaging window. Light Sci Appl. 2021;10(1):197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gao S, Yu S, Zhang Y, Wu A, Zhang S, Wei G, et al. Molecular engineering of near-infrared-II photosensitizers with steric-hindrance effect for image-guided cancer photodynamic therapy. Adv Funct Mater. 2021;31(14):2008356.

    Article  CAS  Google Scholar 

  13. Xu J, Han T, Wang Y, Zhang F, Li M, Bai L, et al. Ultrabright renal-clearable cyanine-protein nanoprobes for high-quality NIR-II angiography and lymphography. Nano Lett. 2022;22(19):7965–75.

    Article  CAS  PubMed  Google Scholar 

  14. Li Y, Zha M, Kang T, Li C, Wu X, Wang S, et al. Promoted NIR-II fluorescence by heteroatom-nserted rigid-planar cores for monitoring cell therapy of acute lung injury. Small. 2022;18(1):2105362.

    Article  CAS  Google Scholar 

  15. Kenry Duan Y, Liu BJAM. Biological imaging: recent advances of optical imaging in the second near-nfrared window. Adv Mater. 2018;30(47):1870361.

    Article  Google Scholar 

  16. Tian R, Ma H, Zhu S, Lau J, Ma R, Liu Y, et al. Multiplexed NIR-II probes for lymph node-invaded cancer detection and imaging-guided surgery. Adv Mater. 2020;32(11):1907365.

    Article  CAS  Google Scholar 

  17. Fan X, Li Y, Feng Z, Chen G, Zhou J, He M, et al. Nanoprobes-assisted multichannel NIR-II fluorescence imaging-guided resection and photothermal ablation of lymph nodes. Adv Sci. 2021;8(9):2003972.

    Article  CAS  Google Scholar 

  18. Tian R, Feng X, Wei L, Dai D, Ma Y, Pan H, et al. A genetic engineering strategy for editing near-infrared-II fluorophores. Nat Commun. 2022;13(1):2853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Song S, Wang Y, Zhao Y, Huang W, Zhang F, Zhu S, et al. Molecular engineering of AIE luminogens for NIR-II/IIb bioimaging and surgical navigation of lymph nodes. Matter. 2022;5(9):2847–63.

    Article  CAS  Google Scholar 

  20. Antaris AL, Chen H, Cheng K, Sun Y, Hong G, Qu C, et al. A small-molecule dye for NIR-II imaging. Nat Mater. 2016;15(2):235–42.

    Article  CAS  PubMed  Google Scholar 

  21. Bruns OT, Bischof TS, Harris DK, Franke D, Shi Y, Riedemann L, et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat Biomed Eng. 2017;1:0056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cosco ED, Caram JR, Bruns OT, Franke D, Day RA, Farr EP, et al. Flavylium polymethine fluorophores for near- and shortwave infrared imaging. Angew Chem Int Ed Engl. 2017;56(42):13126–9.

    Article  CAS  PubMed  Google Scholar 

  23. Deng G, Li S, Sun Z, Li W, Zhou L, Zhang J, et al. Near-infrared fluorescence imaging in the largely unexplored window of 900–1,000 nm. Theranostics. 2018;8(15):4116–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jeong S, Jung Y, Bok S, Ryu YM, Lee S, Kim YE, et al. Multiplexed in vivo imaging using size-controlled quantum dots in the second near-infrared window. Adv Healthc Mater. 2018;7(24):e1800695.

    Article  PubMed  Google Scholar 

  25. Qi J, Sun C, Li D, Zhang H, Yu W, Zebibula A, et al. Aggregation-induced emission luminogen with near-infrared-II excitation and near-infrared-I emission for ultradeep intravital two-photon microscopy. ACS Nano. 2018;12(8):7936–45.

    Article  CAS  PubMed  Google Scholar 

  26. Tang Y, Li Y, Hu X, Zhao H, Ji Y, Chen L, et al. “Dual lock-and-key”-controlled nanoprobes for ultrahigh specific fluorescence imaging in the second near-infrared window. Adv Mater. 2018;30(31):e1801140.

    Article  PubMed  Google Scholar 

  27. Yin C, Wen G, Liu C, Yang B, Lin S, Huang J, et al. Organic semiconducting polymer nanoparticles for photoacoustic labeling and tracking of stem cells in the second near-infrared window. ACS Nano. 2018;12(12):12201–11.

    Article  CAS  PubMed  Google Scholar 

  28. Ding F, Chen Z, Kim WY, Sharma A, Li C, Ouyang Q, et al. A nano-cocktail of an NIR-II emissive fluorophore and organoplatinum (ii) metallacycle for efficient cancer imaging and therapy. Chem Sci. 2019;10(29):7023–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. He S, Chen S, Li D, Wu Y, Zhang X, Liu J, et al. High affinity to skeleton rare earth doped nanoparticles for near-infrared II imaging. Nano Lett. 2019;19(5):2985–92.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang H, Zeng W, Pan C, Feng L, Ou M, Zeng X, et al. SnTe@ MnO2-SP nanosheet–based intelligent nanoplatform for second near-infrared light–mediated cancer theranostics. Adv Funct Mater. 2019;29(37):1903791.

    Article  Google Scholar 

  31. Chen D, Liu Y, Zhang Z, Liu Z, Fang X, He S, et al. NIR-II fluorescence imaging reveals bone marrow retention of small polymer nanoparticles. Nano Lett. 2021;21(1):798–805.

    Article  CAS  PubMed  Google Scholar 

  32. Fang Y, Shang J, Liu D, Shi W, Li X, Ma H. Design, synthesis, and application of a small molecular NIR-II fluorophore with maximal emission beyond 1200 nm. J Am Chem Soc. 2020;142(36):15271–5.

    Article  CAS  PubMed  Google Scholar 

  33. Liu MH, Chen TC, Vicente JR, Yao CN, Yang YC, Chen CP, et al. Cyanine-based polymer dots with long-wavelength excitation and near-infrared fluorescence beyond 900 nm for in vivo biological imaging. ACS Appl Bio Mater. 2020;3(6):3846–58.

    Article  CAS  PubMed  Google Scholar 

  34. Liu MH, Zhang Z, Yang YC, Chan YHJACIE. Polymethine-based semiconducting polymer dots with narrow-band emission and absorption/emission maxima at NIR-II for bioimaging. Angew Chem Int Edit. 2021;60(2):983–9.

    Article  CAS  Google Scholar 

  35. Yang Y, Fan X, Li L, Yang Y, Nuernisha A, Xue D, et al. Semiconducting polymer nanoparticles as theranostic system for near-infrared-II fluorescence imaging and photothermal therapy under safe laser fluence. ACS Nano. 2020;14(2):2509–21.

    Article  CAS  PubMed  Google Scholar 

  36. Zhou H, Zeng X, Li A, Zhou W, Tang L, Hu W, et al. Upconversion NIR-II fluorophores for mitochondria-targeted cancer imaging and photothermal therapy. Nat Commun. 2020;11(1):6183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen H, Shou K, Chen S, Qu C, Wang Z, Jiang L, et al. Smart self-assembly amphiphilic cyclopeptide-dye for near-infrared window-II imaging. Adv Mater. 2021;33(16):e2006902.

    Article  PubMed  Google Scholar 

  38. Hua S, Zhong S, Arami H, He J, Zhong D, Zhang D, et al. Simultaneous deep tracking of stem cells by surface enhanced raman imaging combined with single-cell tracking by NIR-II imaging in myocardial infarction. Adv Funct Mater. 2021;31(24):2100468.

    Article  CAS  Google Scholar 

  39. Liu D, He Z, Zhao Y, Yang Y, Shi W, Li X, et al. Xanthene-based NIR-II dyes for in vivo dynamic imaging of blood circulation. J Am Chem Soc. 2021;143(41):17136–43.

    Article  CAS  PubMed  Google Scholar 

  40. Liu X, Yang Y, Ling M, Sun R, Zhu M, Chen J, et al. Near-infrared II light-triggered robust carbon radical generation for combined photothermal and thermodynamic therapy of hypoxic tumors. Adv Funct Mater. 2021;31(24):2101709.

    Article  CAS  Google Scholar 

  41. Tian B, Liu S, Feng L, Liu S, Gai S, Dai Y, et al. Renal-clearable nickel-doped carbon dots with boosted photothermal conversion efficiency for multimodal imaging-guided cancer therapy in the second near-infrared biowindow. Adv Funct Mater. 2021;31(26):2100549.

    Article  CAS  Google Scholar 

  42. Wu L, Ishigaki Y, Zeng W, Harimoto T, Yin B, Chen Y, et al. Generation of hydroxyl radical-activatable ratiometric near-infrared bimodal probes for early monitoring of tumor response to therapy. Nat Commun. 2021;12:6145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou X, Zhang K, Yang C, Pei Y, Zhao L, Kang X, et al. Ultrabright and highly polarity-sensitive NIR-I/NIR-II fluorophores for the tracking of lipid droplets and staging of fatty liver disease. Adv Funct Mater. 2022;32(12):2109929.

    Article  CAS  Google Scholar 

  44. Liang T, Guo Z, He Y, Wang Y, Li C, Li Z, et al. Cyanine-doped lanthanide metal-organic frameworks for near-infrared II bioimaging. Adv Sci. 2022;9(7):e2104561.

    Article  Google Scholar 

  45. He H, Lin Y, Tian ZQ, Zhu DL, Zhang ZL, Pang DW. Ultrasmall Pb:Ag2S quantum dots with uniform particle size and bright tunable fluorescence in the NIR-II window. Small. 2018;14(11):e1703296.

    Article  PubMed  Google Scholar 

  46. Schnermann MJ. Chemical biology: organic dyes for deep bioimaging. Nature. 2017;551(7679):176–7.

    Article  CAS  PubMed  Google Scholar 

  47. Hu Z, Fang C, Li B, Zhang Z, Cao C, Cai M, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat Biomed Eng. 2020;4(3):259–71.

    Article  PubMed  Google Scholar 

  48. Qi S, Zhang H, Zhang X, Yu X, Wang Y, Meng QF, et al. Supramolecular engineering of cell membrane vesicles for cancer immunotherapy. Sci Bull. 2022;67(18):1898–909.

    Article  CAS  Google Scholar 

  49. Wan H, Ma H, Zhu S, Wang F, Tian Y, Ma R, et al. Developing a bright NIR-II fluorophore with fast renal excretion and its application in molecular imaging of immune checkpoint PD-L1. Adv Funct Mater. 2018;28(50):1804956.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tian R, Ma H, Yang Q, Wan H, Zhu S, Chandra S, et al. Rational design of a super-contrast NIR-II fluorophore affords high-performance NIR-II molecular imaging guided microsurgery. Chem Sci. 2019;10(1):326–32.

    Article  CAS  PubMed  Google Scholar 

  51. Yang S, Sun B, Liu F, Li N, Wang M, Wu P, et al. NIR-II imaging-guided mitochondrial-targeting organic nanoparticles for multimodal synergistic tumor therapy. Small. 2023;19(26):e2207995.

    Article  PubMed  Google Scholar 

  52. Liu H, Hong G, Luo Z, Chen J, Chang J, Gong M, et al. Atomic-precision gold clusters for NIR-II imaging. Adv Mater. 2019;31(46):e1901015.

    Article  PubMed  Google Scholar 

  53. Santos HDA, Zabala Gutiérrez I, Shen Y, Lifante J, Ximendes E, Laurenti M, et al. Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging. Nat Commun. 2020;11(1):2933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li H, Wang M, Huang B, Zhu SW, Zhou JJ, Chen DR, et al. Theranostic near-infrared-IIb emitting nanoprobes for promoting immunogenic radiotherapy and abscopal effects against cancer metastasis. Nat Commun. 2021;12(1):7149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu ZY, Liu AA, Fu H, Cheng QY, Zhang MY, Pan MM, et al. Breaking through the size control dilemma of silver chalcogenide quantum dots via trialkylphosphine-induced ripening: leading to Ag2Te emitting from 950 to 2100 nm. J Am Chem Soc. 2021;143(32):12867–77.

    Article  CAS  PubMed  Google Scholar 

  56. Li S, Deng Q, Zhang Y, Li X, Wen G, Cui X, et al. Rational design of conjugated small molecules for superior photothermal theranostics in the NIR-II biowindow. Adv Mater. 2020;32(33):e2001146.

    Article  PubMed  Google Scholar 

  57. Yang Q, Hu Z, Zhu S, Ma R, Ma H, Ma Z, et al. Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. J Am Chem Soc. 2018;140(5):1715–24.

    Article  CAS  PubMed  Google Scholar 

  58. Han T, Wang Y, Xu J, Zhu N, Bai L, Liu X, et al. Surfactant-chaperoned donor-acceptor-donor NIR-II dye strategy efficiently circumvents intermolecular aggregation to afford enhanced bioimaging contrast. Chem Sci. 2022;13(44):13201–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang XD, Wang H, Antaris AL, Li L, Diao S, Ma R, et al. Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv Mater. 2016;28(32):6872–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chi C, Du Y, Ye J, Kou D, Qiu J, Wang J, et al. Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology. Theranostics. 2014;4(11):1072–84.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhu S, Chen XJNP. Overcoming the colour barrier. Nat Photonics. 2019;13(8):515–6.

    Article  CAS  Google Scholar 

  62. Li M, Zheng X, Han T, Ma S, Wang Y, Sun B, et al. Near-infrared-II ratiometric fluorescence probes for non-invasive detection and precise navigation surgery of metastatic sentinel lymph nodes. Theranostics. 2022;12(16):7191–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Oketani M, Tsubouchi H, Hori T, Sakamoto K, Kawakami S, Yoshimitsu N, et al. Sarcoidosis with tumorous hepatic and bone lesions mimicking disseminated malignancy: a case report. Gastroenterol JPN. 1992;27(3):414–7.

    Article  CAS  PubMed  Google Scholar 

  64. Keri VC, Jorwal P, Kodan P, Biswas A. Tuberculosis masquerading as metastasis in liver: a rare and an unusual presentation. BMJ Case Rep. 2020;13(2):e233303.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Popper HH. Progression and metastasis of lung cancer. Cancer Metastasis Rev. 2016;35(1):75–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Duda DG, Duyverman AM, Kohno M, Snuderl M, Steller EJ, Fukumura D, et al. Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci. 2010;107(50):21677–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang Y, Nan J, Ma H, Xu J, Guo F, Wang Y, et al. NIR-II Imaging and sandwiched plasmonic biosensor for ultrasensitive intraoperative definition of tumor-invaded lymph nodes. Nano Lett. 2023;23:4039–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Song SL, Wang YJ, Zhao Y, Huang WB, Zhang F, Zhu SJ, et al. Molecular engineering of AIE luminogens for NIR-II/IIb bioimaging and surgical navigation of lymph nodes. Matter. 2022;5:2847–63.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Jilin Province (JJKH20221056KJ).

Author information

Authors and Affiliations

Authors

Contributions

The concept and study design were conceived by Yajun Wang, Dahai Liu, and Shoujun Zhu. Huilong Ma and Yongye Liang synthesized the probes. Ding Zhou performed and analyzed the molecular dynamic simulations.

Corresponding authors

Correspondence to Ding Zhou, Dahai Liu, Yongye Liang or Shoujun Zhu.

Ethics declarations

Ethics approval

All animal experiments were conducted under the institutional guidelines and were approved by the Animal Ethical Committee of The First Hospital of Jilin University (20210642).

Consent for publication

All the co-authors approved the manuscript and agreed with submission to your esteemed journal.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15.1 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhou, D., Ma, H. et al. An ultra-small organic dye nanocluster for enhancing NIR-II imaging-guided surgery outcomes. Eur J Nucl Med Mol Imaging (2024). https://doi.org/10.1007/s00259-024-06702-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00259-024-06702-0

Keywords

Navigation