Skip to main content
Log in

ImmunoPET/CT imaging of clear cell renal cell carcinoma with [18F]RCCB6: a first-in-human study

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The cluster of differentiation (CD70) is a potential biomarker of clear cell renal cell carcinoma (ccRCC). This study aims to develop CD70-targeted immuno-positron emission tomography/computed tomography (immunoPET/CT) imaging tracers and explore the diagnostic value in preclinical studies and the potential value in detecting metastases in ccRCC patients.

Methods

Four novel CD70-specific single-domain antibodies (sdAbs) were produced and labelled with 18F by the aluminium fluoride restrained complexing agent (AlF-RESCA) method to develop radiotracers. The visualisation properties of the tracers were evaluated in a subcutaneous ccRCC patient–derived xenograft (PDX) model. In a registered prospective clinical trial (NCT06148220), six patients with pathologically confirmed RCC were included and underwent immunoPET/CT examination exploiting one of the developed tracers (i.e., [18F]RCCB6).

Results

We engineered four sdAbs (His-tagged RCCB3 and RCCB6, His-tag-free RB3 and RB6) specifically targeting recombinant human CD70 without cross-reactivity to murine CD70. ImmunoPET/CT imaging with [18F]RCCB3 and [18F]RCCB6 demonstrated a high tumour-to-background ratio in a subcutaneous ccRCC PDX model, with the latter showing better diagnostic potential supported by higher tumour uptake and lower bone accumulation. In comparison, [18F]RB6, developed by sequence optimisation, has significantly lower kidney accumulation than that of [18F]RCCB6. In a pilot translational study, [18F]RCCB6 immunoPET/CT displayed ccRCC metastases in multiple patients and demonstrated improved imaging contrast and diagnostic value than 18F-FDG PET/CT in a patient with ccRCC.

Conclusion

The work successfully developed a series of CD70-targeted immunoPET/CT imaging tracers. Of them, [18F]RCCB6 clearly and specifically identified inoculated ccRCCs in preclinical studies. Clinical translation of [18F]RCCB6 suggests potential for identifying recurrence and/or metastasis in ccRCC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All the relevant data are available from Prof. W. Wei on rational request.

References

  1. Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM. The 2016 WHO classification of tumours of the urinary system and male genital organs—part a: renal, penile, and testicular tumours. European Urol. 2016;70:93–105. https://doi.org/10.1016/j.eururo.2016.02.029.

    Article  Google Scholar 

  2. Dabestani S, Thorstenson A, Lindblad P, Harmenberg U, Ljungberg B, Lundstam S. Renal cell carcinoma recurrences and metastases in primary non-metastatic patients: a population-based study. World J Urol. 2016;34:1081–6. https://doi.org/10.1007/s00345-016-1773-y.

    Article  PubMed  Google Scholar 

  3. Escudier B, Porta C, Schmidinger M, Rioux-Leclercq N, Bex A, Khoo V, et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30:706–20. https://doi.org/10.1093/annonc/mdz056.

    Article  CAS  PubMed  Google Scholar 

  4. Roussel E, Capitanio U, Kutikov A, Oosterwijk E, Pedrosa I, Rowe SP, et al. Novel imaging methods for renal mass characterization: a collaborative review. European Urol. 2022;81:476–88. https://doi.org/10.1016/j.eururo.2022.01.040.

    Article  Google Scholar 

  5. James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev. 2012;92:897–965. https://doi.org/10.1152/physrev.00049.2010.

    Article  CAS  PubMed  Google Scholar 

  6. Wei W, Rosenkrans ZT, Liu J, Huang G, Luo Q-Y, Cai W. ImmunoPET: concept, design, and applications. Chem Rev. 2020;120:3787–851. https://doi.org/10.1021/acs.chemrev.9b00738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Verhoeff SR, Oosting SF, Elias SG, van Es SC, Gerritse SL, Angus L, et al. [89Zr]Zr-DFO-girentuximab and [18F]FDG PET/CT to predict watchful waiting duration in patients with metastatic clear-cell renal cell carcinoma. Clin Cancer Res. 2023;29:592–601. https://doi.org/10.1158/1078-0432.Ccr-22-0921.

    Article  CAS  PubMed  Google Scholar 

  8. Hekman MCH, Rijpkema M, Aarntzen EH, Mulder SF, Langenhuijsen JF, Oosterwijk E, et al. Positron emission tomography/computed tomography with (89)Zr-girentuximab can aid in diagnostic dilemmas of clear cell renal cell carcinoma suspicion. Eur Urol. 2018;74:257–60. https://doi.org/10.1016/j.eururo.2018.04.026.

    Article  PubMed  Google Scholar 

  9. Wei W, Younis MH, Lan X, Liu J, Cai W. Single-domain antibody theranostics on the horizon. J Nucl Med. 2022;63:1475–9. https://doi.org/10.2967/jnumed.122.263907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krasniqi A, D’Huyvetter M, Devoogdt N, Frejd FY, Sorensen J, Orlova A, et al. Same-day imaging using small proteins: clinical experience and translational prospects in oncology. J Nucl Med. 2018;59:885–91. https://doi.org/10.2967/jnumed.117.199901.

    Article  CAS  PubMed  Google Scholar 

  11. Morris O, Fairclough M, Grigg J, Prenant C, McMahon A. A review of approaches to 18F radiolabelling affinity peptides and proteins. J Label Compd Radiopharm. 2018;62:4–23. https://doi.org/10.1002/jlcr.3634.

    Article  CAS  Google Scholar 

  12. Cleeren F, Lecina J, Bridoux J, Devoogdt N, Tshibangu T, Xavier C, et al. Direct fluorine-18 labeling of heat-sensitive biomolecules for positron emission tomography imaging using the Al18F-RESCA method. Nat Protoc. 2018;13:2330–47. https://doi.org/10.1038/s41596-018-0040-7.

    Article  CAS  PubMed  Google Scholar 

  13. Qin X, Guo X, Liu T, Li L, Zhou N, Ma X, et al. High in-vivo stability in preclinical and first-in-human experiments with [18F]AlF-RESCA-MIRC213: a 18F-labeled nanobody as PET radiotracer for diagnosis of HER2-positive cancers. European J Nucl Med Mol Imaging. 2022;50:302–13. https://doi.org/10.1007/s00259-022-05967-7.

    Article  CAS  Google Scholar 

  14. Flieswasser T, Van den Eynde A, Van Audenaerde J, De Waele J, Lardon F, Riether C, et al. The CD70-CD27 axis in oncology: the new kids on the block. J Exp Clin Cancer Res. 2022;41:12. https://doi.org/10.1186/s13046-021-02215-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Benhamouda N, Sam I, Epaillard N, Gey A, Phan L, Pham HP, et al. Plasma CD27, a surrogate of the intratumoral CD27-CD70 interaction, correlates with immunotherapy resistance in renal cell carcinoma. Clin Cancer Res. 2022;28:4983–94. https://doi.org/10.1158/1078-0432.Ccr-22-0905.

    Article  CAS  PubMed  Google Scholar 

  16. Jacobs J, Deschoolmeester V, Zwaenepoel K, Rolfo C, Silence K, Rottey S, et al. CD70: An emerging target in cancer immunotherapy. Pharmacol Ther. 2015;155:1–10. https://doi.org/10.1016/j.pharmthera.2015.07.007.

    Article  CAS  PubMed  Google Scholar 

  17. Huang RR, Chen Z, Kroeger N, Pantuck A, Said J, Kluger HM, et al. CD70 is consistently expressed in primary and metastatic clear cell renal cell carcinoma. Clin Genitourin Cancer. 2023. https://doi.org/10.1016/j.clgc.2023.12.003.

    Article  PubMed  Google Scholar 

  18. Ruf M, Mittmann C, Nowicka AM, Hartmann A, Hermanns T, Poyet C, et al. pVHL/HIF-regulated CD70 expression is associated with infiltration of CD27+ lymphocytes and increased serum levels of soluble CD27 in clear cell renal cell carcinoma. Clin Cancer Res. 2015;21:889–98. https://doi.org/10.1158/1078-0432.CCR-14-1425.

    Article  CAS  PubMed  Google Scholar 

  19. Jilaveanu LB, Sznol J, Aziz SA, Duchen D, Kluger HM, Camp RL. CD70 expression patterns in renal cell carcinoma. Human Pathol. 2012;43:1394–9. https://doi.org/10.1016/j.humpath.2011.10.014.

    Article  CAS  Google Scholar 

  20. Li S, Chen D, Guo H, Liu D, Yang C, Zhang R, et al. The novel high-affinity humanized antibody IMM40H targets CD70, eliminates tumors via Fc-mediated effector functions, and interrupts CD70/CD27 signaling. Front Oncol. 2023;13:1240061. https://doi.org/10.3389/fonc.2023.1240061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Panowski SH, Srinivasan S, Tan N, Tacheva-Grigorova SK, Smith B, Mak YSL, et al. Preclinical development and evaluation of allogeneic CAR T cells targeting CD70 for the treatment of renal cell carcinoma. Cancer Res. 2022;82:2610–24. https://doi.org/10.1158/0008-5472.CAN-21-2931.

    Article  CAS  PubMed  Google Scholar 

  22. Dewulf J, Flieswasser T, Delahaye T, Vangestel C, Miranda A, de Haard H, et al. Site-specific (68)Ga-labeled nanobody for PET imaging of CD70 expression in preclinical tumor models. EJNMMI Radiopharm Chem. 2023;8:8. https://doi.org/10.1186/s41181-023-00194-3.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ziaei V, Ghassempour A, Davami F, Azarian B, Behdani M, Dabiri H, et al. Production and characterization of a camelid single domain anti-CD22 antibody conjugated to DM1. Mol Cell Biochem. 2023. https://doi.org/10.1007/s11010-023-04741-z.

    Article  PubMed  Google Scholar 

  24. Zhang X, Liu C, Xie Y, Hu Q, Chen Y, Li J. Identification and characterization of blocking nanobodies against human CD70. Acta Biochim Biophys Sin (Shanghai). 2022;54:1518–27. https://doi.org/10.3724/abbs.2022141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cleeren F, Lecina J, Bridoux J, Devoogdt N, Tshibangu T, Xavier C, et al. Direct fluorine-18 labeling of heat-sensitive biomolecules for positron emission tomography imaging using the Al(18)F-RESCA method. Nat Protoc. 2018;13:2330–47. https://doi.org/10.1038/s41596-018-0040-7.

    Article  CAS  PubMed  Google Scholar 

  26. Dandekar M, Tseng JR, Gambhir SS. Reproducibility of <sup>18</sup>F-FDG microPET studies in mouse tumor xenografts. J Nucl Med. 2007;48:602–7. https://doi.org/10.2967/jnumed.106.036608.

    Article  PubMed  Google Scholar 

  27. Barata PC, Rini BI. Treatment of renal cell carcinoma: current status and future directions. CA: A Cancer J Clin. 2017;67:507–24. https://doi.org/10.3322/caac.21411.

    Article  Google Scholar 

  28. Wu Q, Huang G, Wei W, Liu J. Molecular imaging of renal cell carcinoma in precision medicine. Mol Pharm. 2022;19:3457–70. https://doi.org/10.1021/acs.molpharmaceut.2c00034.

    Article  CAS  PubMed  Google Scholar 

  29. Pal SK, Forero-Torres A, Thompson JA, Morris JC, Chhabra S, Hoimes CJ, et al. A phase 1 trial of SGN-CD70A in patients with CD70-positive, metastatic renal cell carcinoma. Cancer. 2019;125:1124–32. https://doi.org/10.1002/cncr.31912.

    Article  CAS  PubMed  Google Scholar 

  30. Yang M, Tang X, Zhang Z, Gu L, Wei H, Zhao S, et al. Tandem CAR-T cells targeting CD70 and B7–H3 exhibit potent preclinical activity against multiple solid tumors. Theranostics. 2020;10:7622–34. https://doi.org/10.7150/thno.43991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tannir NM, Forero-Torres A, Ramchandren R, Pal SK, Ansell SM, Infante JR, et al. Phase I dose-escalation study of SGN-75 in patients with CD70-positive relapsed/refractory non-Hodgkin lymphoma or metastatic renal cell carcinoma. Investig New Drugs. 2014;32:1246–57. https://doi.org/10.1007/s10637-014-0151-0.

    Article  CAS  Google Scholar 

  32. Owonikoko TK, Hussain A, Stadler WM, Smith DC, Kluger H, Molina AM, et al. First-in-human multicenter phase I study of BMS-936561 (MDX-1203), an antibody-drug conjugate targeting CD70. Cancer Chemother Pharmacol. 2015;77:155–62. https://doi.org/10.1007/s00280-015-2909-2.

    Article  CAS  PubMed  Google Scholar 

  33. Massard C, Soria J-C, Krauss J, Gordon M, Lockhart AC, Rasmussen E, et al. First-in-human study to assess safety, tolerability, pharmacokinetics, and pharmacodynamics of the anti-CD27L antibody-drug conjugate AMG 172 in patients with relapsed/refractory renal cell carcinoma. Cancer Chemother Pharmacol. 2019;83:1057–63. https://doi.org/10.1007/s00280-019-03796-4.

    Article  CAS  PubMed  Google Scholar 

  34. Aftimos P, Rolfo C, Rottey S, Offner F, Bron D, Maerevoet M, et al. Phase I dose-escalation study of the anti-CD70 Antibody ARGX-110 in advanced malignancies. Clin Cancer Res. 2017;23:6411–20. https://doi.org/10.1158/1078-0432.Ccr-17-0613.

    Article  CAS  PubMed  Google Scholar 

  35. Riether C, Pabst T, Höpner S, Bacher U, Hinterbrandner M, Banz Y, et al. Targeting CD70 with cusatuzumab eliminates acute myeloid leukemia stem cells in patients treated with hypomethylating agents. Nat Med. 2020;26:1459–67. https://doi.org/10.1038/s41591-020-0910-8.

    Article  CAS  PubMed  Google Scholar 

  36. Flieswasser T, Camara-Clayette V, Danu A, Bosq J, Ribrag V, Zabrocki P, et al. Screening a broad range of solid and haematological tumour types for CD70 expression using a uniform IHC methodology as potential patient stratification method. Cancers. 2019;11. https://doi.org/10.3390/cancers11101611.

  37. Duclos V, Iep A, Gomez L, Goldfarb L, Besson FL. PET molecular imaging: a holistic review of current practice and emerging perspectives for diagnosis, therapeutic evaluation and prognosis in clinical oncology. International J Mol Sci. 2021;22. https://doi.org/10.3390/ijms22084159.

  38. An S, Zhang D, Zhang Y, Wang C, Shi L, Wei W, et al. GPC3-targeted immunoPET imaging of hepatocellular carcinomas. European J Nucl Med Mol Imaging. 2022;49:2682–92. https://doi.org/10.1007/s00259-022-05723-x.

    Article  CAS  Google Scholar 

  39. Zhang Y, Zhang D, An S, Liu Q, Liang C, Li J, et al. Development and characterization of nanobody-derived CD47 theranostic pairs in solid tumors. Research. 2023;6:0077. https://doi.org/10.34133/research.0077.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chatalic KLS, Veldhoven-Zweistra J, Bolkestein M, Hoeben S, Koning GA, Boerman OC, et al. A novel 111In-labeled anti–prostate-specific membrane antigen nanobody for targeted SPECT/CT imaging of prostate cancer. J Nucl Med. 2015;56:1094–9. https://doi.org/10.2967/jnumed.115.156729.

    Article  CAS  PubMed  Google Scholar 

  41. D’Huyvetter M, Vincke C, Xavier C, Aerts A, Impens N, Baatout S, et al. Targeted radionuclide therapy with A 177Lu-labeled anti-HER2 nanobody. Theranostics. 2014;4:708–20. https://doi.org/10.7150/thno.8156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang E, Liu Q, Huang G, Liu J, Wei W. Engineering nanobodies for next-generation molecular imaging. Drug Discovery Today. 2022;27:1622–38. https://doi.org/10.1016/j.drudis.2022.03.013.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by the National Key Research and Development Program of China (Grant No. 2020YFA0909000), the National Natural Science Foundation of China (Grant No. 82372014), and the Shen Kang-United Imaging Joint Research and Development Plan (Grant No. SKLY2022CRT301).

Author information

Authors and Affiliations

Authors

Contributions

W. Wei, W. Zhai and J. Liu conceptualised and designed the study methodology. Q. Wu, Y. Zhang, and Y. Wu conducted experiments and performed visualisation work. J. Liu, G. Huang, and Y. Guan were responsible for project administration and supervised the study. W. Wei, Q. Wu, and Y. Wu wrote the original manuscript draft, while others contributed to the writing. W. Wei and W. Zhai reviewed, edited, and finalised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jianjun Liu, Wei Zhai or Weijun Wei.

Ethics declarations

Ethics approval

All animal imaging studies were approved by the Institutional Committee for the Care and Use of Animals (Renji Hospital, Shanghai Jiao Tong University School of Medicine). The clinical study was approved by the Institutional Ethical Reviewing Board of Huashan Hospital and registered as a prospective clinical trial (ClinicalTrials.gov ID NCT06148220).

Consent to participate

Written informed consents were obtained from all the included patients.

Consent to publish

All the participants agreed to the publication of the imaging data.

Competing interests

W. Wei is a consultant of Alpha Nuclide (Ningbo) Medical Technology Co., Ltd. W. Wei, Q. Wu, and J. Liu are co-inventors of three pending patents describing the disclosed imaging technologies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1588 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Wu, Y., Zhang, Y. et al. ImmunoPET/CT imaging of clear cell renal cell carcinoma with [18F]RCCB6: a first-in-human study. Eur J Nucl Med Mol Imaging (2024). https://doi.org/10.1007/s00259-024-06672-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00259-024-06672-3

Keywords

Navigation