Skip to main content
Log in

Effects of medication on dopamine transporter imaging using [123I]I-FP-CIT SPECT in routine practice

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Dopamine transporter (DAT) imaging is used to support the diagnosis of neurodegenerative parkinsonian disorders. Specific medications have been reported to confound the interpretation of [123I]I-FP-CIT SPECT scans, but there is limited data. The aim of the current study is to identify potential medication effects on the interpretation of [123I]I-FP-CIT SPECT scans in routine practice.

Materials and methods

Consecutive patients undergoing a [123I]I-FP-CIT SPECT/CT scan on a 360° CZT camera between September 2019 and December 2022 were included. An exhaustive review of patient medications (antidepressants, antipsychotics, anti-epileptics, anti-parkinsonians, benzodiazepines, lithium, opioids, and stimulants) was performed. Two experienced nuclear physicians, blinded to the medication reports, interpreted the [123I]I-FP-CIT SPECT scans visually and a semi-quantitative analysis was performed using a local normal database.

Results

The study included 305 patients (71.0 ± 10.4, 135 women) and 145 (47.5%) visually interpreted normal scans. In normal scans, the striatum/occiput radioligand uptake ratio was decreased by noradrenergic and specific serotonergic antidepressants (NASSAs) (n = 15, z-score of − 0.93) and opioid medication (tramadol, n = 6, z-score of − 0.85) and was associated with a younger age in the multivariate analysis. In the overall population, the striatum/occiput ratio was influenced by NASSAs and associated with consensual visual analysis, age, sex, and anti-parkinsonian medications related to the status of the disease.

Conclusion

Our study confirms the potential impact of antidepressant (NASSA) and opioid (tramadol) medications on the semi-quantitative analysis of [123I]I-FP-CIT SPECT scans. However, when performing a visual analysis, only NASSAs significantly impacted the interpretation of [123I]I-FP-CIT SPECT scans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data that support the findings of this study may be requested from the corresponding author (AV).

Code availability

Not applicable.

References

  1. Morbelli S, Esposito G, Arbizu J, Barthel H, Boellaard R, Bohnen NI, et al. EANM practice guideline/SNMMI procedure standard for dopaminergic imaging in Parkinsonian syndromes 1.0. Eur J Nucl Med Mol Imaging. 2020;47:1885–912.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Verger A, Darcourt J, Habert M-O, Pallardy A, Santiago-Ribeiro M-J, Le Jeune F, et al. Guide de rédaction des protocoles d’examens d’imagerie de la neurotransmission pour l’exploration des mouvements anormaux. Médecine Nucl. 2021;45:98–111.

    Article  Google Scholar 

  3. Chahid Y, Sheikh ZH, Mitropoulos M, Booij J. A systematic review of the potential effects of medications and drugs of abuse on dopamine transporter imaging using [123I]I-FP-CIT SPECT in routine practice. Eur J Nucl Med Mol Imaging. 2023;50(7):1974-1987. https://doi.org/10.1007/s00259-023-06171-x.

  4. Booij J, Kemp P. Dopamine transporter imaging with [(123)I]FP-CIT SPECT: potential effects of drugs. Eur J Nucl Med Mol Imaging. 2008;35:424–38.

    Article  CAS  PubMed  Google Scholar 

  5. Aster H-C, Romanos M, Walitza S, Gerlach M, Mühlberger A, Rizzo A, et al. Responsivity of the striatal dopamine system to methylphenidate—a within-subject I-123-β-CIT-SPECT study in male children and adolescents with attention-deficit/hyperactivity disorder. Front Psychiatry. 2022;13: 804730.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Womack KB, Dubiel R, Callender L, Dunklin C, Dahdah M, Harris TS, et al. 123 I-Iofluopane single-photon emission computed tomography as an imaging biomarker of pre-synaptic dopaminergic system after moderate-to-severe traumatic brain injury. J Neurotrauma. 2020;37:2113–9.

    Article  PubMed  Google Scholar 

  7. Szobot CM, Shih MC, Schaefer T, Júnior N, Hoexter MQ, Fu YK, et al. Methylphenidate DAT binding in adolescents with attention-deficit/ hyperactivity disorder comorbid with substance use disorder - a single photon emission computed tomography with [Tc99m]TRODAT-1 study. Neuroimage. 2008;40:1195–201.

    Article  PubMed  Google Scholar 

  8. Volkow ND, Fowler JS, Logan J, Alexoff D, Zhu W, Telang F, et al. Effects of modafinil on dopamine and dopamine transporters in the male human brain: clinical implications. JAMA. 2009;301:1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Borghammer P, Knudsen K, Danielsen E, Østergaard K. False-positive 123I-FP-CIT scintigraphy and suggested dopamine transporter upregulation due to chronic modafinil treatment. Clin Nucl Med. 2014;39:e87–8.

    Article  PubMed  Google Scholar 

  10. Learned-Coughlin SM, Bergström M, Savitcheva I, Ascher J, Schmith VD, Långstrom B. In vivo activity of bupropion at the human dopamine transporter as measured by positron emission tomography. Biol Psychiatry. 2003;54:800–5.

    Article  CAS  PubMed  Google Scholar 

  11. Árgyelán M, Szabó Z, Kanyó B, Tanács A, Kovács Z, Janka Z, et al. Dopamine transporter availability in medication free and in bupropion treated depression: A 99mTc-TRODAT-1 SPECT study. J Affect Disord. 2005;89:115–23.

    Article  PubMed  Google Scholar 

  12. Meyer JH, Goulding VS, Wilson AA, Hussey D, Christensen BK, Houle S. Bupropion occupancy of the dopamine transporter is low during clinical treatment. Psychopharmacology. 2002;163:102–5.

    Article  CAS  PubMed  Google Scholar 

  13. Hsiao M-C, Lin K-J, Liu C-Y, Beck SD. The interaction between dopamine transporter function, gender differences, and possible laterality in depression. Psychiatry Res Neuroimaging. 2013;211:72–7.

    Article  CAS  Google Scholar 

  14. Honkanen EA, Kemppainen N, Noponen T, Seppänen M, Joutsa J, Kaasinen V. Bupropion causes misdiagnosis in brain dopamine transporter imaging for parkinsonism. Clin Neuropharmacol. 2019;42:181–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Booij J, de Jong J, de Bruin K, Knol R, de Win MML, van Eck-Smit BLF. Quantification of striatal dopamine transporters with 123I-FP-CIT SPECT is influenced by the selective serotonin reuptake inhibitor paroxetine: a double-blind, placebo-controlled, crossover study in healthy control subjects. J Nucl Med. 2007;48:359–66.

    CAS  PubMed  Google Scholar 

  16. Shang Y, Gibbs MA, Marek GJ, Stiger T, Burstein AH, Marek K, et al. Displacement of serotonin and dopamine transporters by venlafaxine extended release capsule at steady state: a [123I]2β-carbomethoxy-3β-(4-iodophenyl)-tropane single photon emission computed tomography imaging study. J Clin Psychopharmacol. 2007;27:71–5.

    Article  CAS  PubMed  Google Scholar 

  17. Warwick JM, Carey PD, Cassimjee N, Lochner C, Hemmings S, Moolman-Smook H, et al. Dopamine transporter binding in social anxiety disorder: the effect of treatment with escitalopram. Metab Brain Dis. 2012;27:151–8.

    Article  CAS  PubMed  Google Scholar 

  18. Rominger A, Cumming P, Brendel M, Xiong G, Zach C, Karch S, et al. Altered serotonin and dopamine transporter availabilities in brain of depressed patients upon treatment with escitalopram: A [123I]β-CIT SPECT study. Eur Neuropsychopharmacol. 2015;25:873–81.

    Article  CAS  PubMed  Google Scholar 

  19. Wu C-K, Chin Chen K, See Chen P, Chiu N-T, Yeh TL, Lee IH, et al. No changes in striatal dopamine transporter in antidepressant-treated patients with major depression. Int Clin Psychopharmacol. 2013;28:141–4.

    Article  PubMed  Google Scholar 

  20. Krause D, Chrobok A, Karch S, Keeser D, Manz KM, Koch W, et al. Binding potential changes of SERT in patients with depression are associated with remission: a prospective [123I]β-CIT-SPECT study. Exp Clin Psychopharmacol. 2023;31:219–27.

    Article  PubMed  Google Scholar 

  21. Schmitt GJE, Dresel S, Frodl T, la Fougère C, Boerner R, Hahn K, et al. Dual-isotope SPECT imaging of striatal dopamine: a comparative study between never-treated and haloperidol-treated first-episode schizophrenic patients. Eur Arch Psychiatry Clin Neurosci. 2012;262:183–91.

    Article  CAS  PubMed  Google Scholar 

  22. Mateos JJ, Lomeña F, Parellada E, Mireia F, Fernandez-Egea E, Pavia J, et al. Lower striatal dopamine transporter binding in neuroleptic-naive schizophrenic patients is not related to antipsychotic treatment but it suggests an illness trait. Psychopharmacology. 2007;191:805–11.

    Article  CAS  PubMed  Google Scholar 

  23. Lavalaye J, Linszen DH, Booij J, Dingemans PMAJ, Reneman L, Habraken JBA, et al. Dopamine transporter density in young patients with schizophrenia assessed with [123]FP-CIT SPECT. Schizophr Res. 2001;47:59–67.

    Article  CAS  PubMed  Google Scholar 

  24. Chang WH, Chen KC, Lee IH, Chi MH, Chen PS, Yao WJ, et al. Unaltered dopamine transporter availability in drug-naive patients with schizophrenia after 6 months of antipsychotics treatment: a naturalistic study. J Clin Psychopharmacol. 2017;37:21–6.

    Article  CAS  PubMed  Google Scholar 

  25. Hou H, Yin S, Jia S, Hu S, Sun T, Chen Q, et al. Decreased striatal dopamine transporters in codeine-containing cough syrup abusers. Drug Alcohol Depend. 2011;118:148–51.

    Article  CAS  PubMed  Google Scholar 

  26. Piatkova Y, Payoux P, Boursier C, Bordonne M, Roch V, Marie P-Y, et al. Prospective paired comparison of 123I-FP-CIT SPECT images obtained with a 360°-CZT and a conventional camera. Clin Nucl Med. 2022;47:14–20.

    Article  PubMed  Google Scholar 

  27. Lanfranchi F, Arnaldi D, Miceli A, Mattioli P, D’Amico F, Raffa S, et al. Different z-score cut-offs for striatal binding ratio (SBR) of DaT SPECT are needed to support the diagnosis of Parkinson’s Disease (PD) and dementia with Lewy bodies (DLB). Eur J Nucl Med Mol Imaging. 2023;50:1090–102.

    Article  PubMed  Google Scholar 

  28. Kishi T, Iwata N. Meta-analysis of noradrenergic and specific serotonergic antidepressant use in schizophrenia. Int J Neuropsychopharmacol. 2014;17:343–54.

    Article  CAS  PubMed  Google Scholar 

  29. Croom KF, Perry CM, Plosker GL. Mirtazapine: a review of its use in major depression and other psychiatric disorders. CNS Drugs. 2009;23:427–52.

    Article  CAS  PubMed  Google Scholar 

  30. de Boer T. The effects of mirtazapine on central noradrenergic and serotonergic neurotransmission. Int Clin Psychopharmacol. 1995;10:19–23.

    Article  PubMed  Google Scholar 

  31. Kent JM. SNaRIs, NaSSAs, and NaRIs: new agents for the treatment of depression. Lancet. 2000;355:911–8.

    Article  CAS  PubMed  Google Scholar 

  32. Fasipe O. Neuropharmacological classification of antidepressant agents based on their mechanisms of action. Arch Med Health Sci. 2018;6:81.

    Article  Google Scholar 

  33. Millan MJ, Gobert A, Rivet J-M, Adhumeau-Auclair A, Cussac D, Newman-Tancredi A, et al. Mirtazapine enhances frontocortical dopaminergic and corticolimbic adrenergic, but not serotonergic, transmission by blockade of α 2 -adrenergic and serotonin 2C receptors: a comparison with citalopram: Monoamines and depression. Eur J Neurosci. 2000;12:1079–95.

    Article  CAS  PubMed  Google Scholar 

  34. Ziebell M, Holm-Hansen S, Thomsen G, Wagner A, Jensen P, Pinborg LH, et al. Serotonin transporters in dopamine transporter imaging: a head-to-head comparison of dopamine transporter SPECT radioligands 123 I-FP-CIT and 123 I-PE2I. J Nucl Med. 2010;51:1885–91.

    Article  PubMed  Google Scholar 

  35. Justesen TEH, Borghammer P, Aanerud J, Hovind P, Marner L. Sertraline treatment influences [18F]FE-PE2I PET imaging for Parkinsonism. EJNMMI Res. 2023;13:46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen F, Lawrence AJ. The effects of antidepressant treatment on serotonergic and dopaminergic systems in Fawn-Hooded rats: a quantitative autoradiography study. Brain Res. 2003;976:22–9.

    Article  CAS  PubMed  Google Scholar 

  37. Thibaut F, Bonnet J-J, Vaugeois J-M, Costentin J. Pharmacological modifications of dopamine transmission do not influence the striatal in vivo binding of [3H]mazindol or [3H]cocaine in mice. Neurosci Lett. 1996;205:145–8.

    Article  CAS  PubMed  Google Scholar 

  38. Bergström KA, Jolkkonen J, Kuikka JT, Akerman KK, Viinamäki H, Airaksinen O, et al. Fentanyl decreases ?-CIT binding to the dopamine transporter. Synapse. 1998;29:413–5.

    Article  PubMed  Google Scholar 

  39. Beakley BD, Kaye AM, Kaye AD. Tramadol, pharmacology, side effects, and serotonin syndrome: a review. Pain Physician. 2015;18:395–400.

    PubMed  Google Scholar 

  40. Hosseini-Sharifabad A, Rabbani M, Sharifzadeh M, Bagheri N. Acute and chronic tramadol administration impair spatial memory in rat. Res Pharm Sci. 2016;11:49–57.

    PubMed  PubMed Central  Google Scholar 

  41. Bameri B, Shaki F, Ahangar N, Ataee R, Samadi M, Mohammadi H. Evidence for the involvement of the dopaminergic system in seizure and oxidative damage induced by tramadol. Int J Toxicol. 2018;37:164–70.

    Article  CAS  PubMed  Google Scholar 

  42. Schillaci O, Pierantozzi M, Filippi L, Manni C, Brusa L, Danieli R, et al. The effect of levodopa therapy on dopamine transporter SPECT imaging with 123I-FP-CIT in patients with Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2005;32:1452–6.

    Article  CAS  PubMed  Google Scholar 

  43. Innis RB, Marek KL, Sheff K, Zoghbi S, Castronuovo J, Feigin A, et al. Effect of treatment withL-dopa/carbidopa orL-selegiline on striatal dopamine transporter SPECT imaging with [123I]?-CIT. Mov Disord. 1999;14:436–42.

    Article  CAS  PubMed  Google Scholar 

  44. Nurmi E, Bergman J, Eskola O, Solin O, Hinkka SM, Sonninen P, et al. Reproducibility and effect of levodopa on dopamine transporter function measurements: a [18 F]CFT PET study. J Cereb Blood Flow Metab. 2000;20:1604–9.

    Article  CAS  PubMed  Google Scholar 

  45. Winogrodzka A. [123I]beta-CIT SPECT is a useful method for monitoring dopaminergic degeneration in early stage Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2003;74:294–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fowler JS, Volkow ND, Logan J, Franceschi D, Wang G-J, MacGregor R, et al. Evidence that l-deprenyl treatment for one week does not inhibit mao a or the dopamine transporter in the human brain. Life Sci. 2001;68:2759–68.

    Article  CAS  PubMed  Google Scholar 

  47. Guttman M, Stewart D, Hussey D, Wilson A, Houle S, Kish S. Influence of L-dopa and pramipexole on striatal dopamine transporter in early PD. Neurology. 2001;56:1559–64.

    Article  CAS  PubMed  Google Scholar 

  48. Fahn S, Oakes D, Shoulson I, Kieburtz K, Rudolph A, Lang A, Olanow CW, Tanner C, Marek K. Parkinson study group. Levodopa and the progression of Parkinson's disease. N Engl J Med. 2004;351(24):2498–508. https://doi.org/10.1056/NEJMoa033447.

  49. Rossi C, Genovesi D, Marzullo P, Giorgetti A, Filidei E, Corsini GU, et al. Striatal dopamine transporter modulation after rotigotine: results from a pilot single-photon emission computed tomography study in a group of early stage Parkinson disease patients. Clin Neuropharmacol. 2017;40:34–6.

    Article  CAS  PubMed  Google Scholar 

  50. Eusebio A, Azulay J-P, Ceccaldi M, Girard N, Mundler O, Guedj E. Voxel-based analysis of whole-brain effects of age and gender on dopamine transporter SPECT imaging in healthy subjects. Eur J Nucl Med Mol Imaging. 2012;39:1778–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed significantly to the collection, analysis, and interpretation of the data (YP, MD, SH, LI, AV), to the writing of the manuscript (YP, AV) and to the revision of the manuscript (MD, AT, SF, LH, AV).

Corresponding author

Correspondence to Antoine Verger.

Ethics declarations

Ethics approval and consent to participate

The institutional ethics committee (Comité d’Ethique du CHRU de Nancy) approved the evaluation of retrospective patient data and the trial was registered at ClinicalTrials.gov (NCT 05683665). This research complied with the principles of the Declaration of Helsinki. Informed consent was obtained from all individuals included in the study.

Consent for publication

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6491 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piatkova, Y., Doyen, M., Heyer, S. et al. Effects of medication on dopamine transporter imaging using [123I]I-FP-CIT SPECT in routine practice. Eur J Nucl Med Mol Imaging 51, 1323–1332 (2024). https://doi.org/10.1007/s00259-023-06565-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-023-06565-x

Keywords

Navigation