Skip to main content
Log in

Organotrifluoroborate enhances tumor targeting of fibroblast activation protein inhibitors for targeted radionuclide therapy

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Fibroblast activation protein (FAP) is a pan-cancer target and now the state-of-the-art to develop radiopharmaceuticals. FAP inhibitors have been of great success in developing imaging tracers. Yet, the overly rapid clearance cannot match with the long half-lives of regular therapeutic radionuclides. Though strategies that aim to elongate the circulation of FAPIs are being developed, here we describe an innovation that uses α-emitters of short half-lives (e.g., 213Bi) to pair the rapid pharmacokinetics of FAPIs.

Methods

An organotrifluoroborate linker is engineered to FAPIs to give two advantages: (1) selectively increases tumor uptake and retention; (2) facile 18F-radiolabeling for positron emission tomography to guide radiotherapy with α-emitters, which can hardly be traced in general.

Results

The organotrifluoroborate linker helps to improve the internalization in cancer cells, resulting in notably higher tumor uptake while the background is clean. In FAP-expressed tumor-bearing mice, this FAPI labeled with 213Bi, a short half-life α-emitter, exhibits almost complete suppression to tumor growth while the side effect is negligible. Additional data shows that this strategy is generally applicable to guide other α-emitters, such as 212Bi, 212Pb, and 149Tb.

Conclusion

The organotrifluoroborate linker may be of importance to optimize FAP-targeted radiopharmaceuticals, and the short half-lived α-emitters may be of choice for the rapid-cleared small molecule-based radiopharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Gill MR, Falzone N, Du Y, Vallis KA. Targeted radionuclide therapy in combined-modality regimens. Lancet Oncol. 2017;18:e414–23.

    Article  CAS  PubMed  Google Scholar 

  2. Sartor O, de Bono J, Chi KN, et al. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N Engl J Med. 2021;385:1091–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gafita A, Calais J, Grogan TR, et al. Nomograms to predict outcomes after 177Lu-PSMA therapy in men with metastatic castration-resistant prostate cancer: an international, multicentre, retrospective study. Lancet Oncol. 2021;22:1115–25.

    Article  CAS  PubMed  Google Scholar 

  4. Langbein T, Weber WA, Eiber M. Future of theranostics: an outlook on precision oncology in nuclear medicine. J Nucl Med. 2019;60:13S-19S.

    Article  CAS  PubMed  Google Scholar 

  5. de Swart J, Chan HS, Goorden MC, et al. Utilizing high-energy γ-photons for high-resolution 213Bi SPECT in mice. J Nucl Med. 2016;57:486–92.

    Article  PubMed  Google Scholar 

  6. Kratochwil C, Flechsig P, Lindner T, et al. (68)Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J Nucl Med. 2019;60:801–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wei Y, Zheng J, Ma L, et al. [18F]AlF-NOTA-FAPI-04: FAP-targeting specificity, biodistribution, and PET/CT imaging of various cancers. Eur J Nucl Med Mol Imaging. 2022;49:2761–73.

    Article  CAS  PubMed  Google Scholar 

  8. Loktev A, Lindner T, Burger EM, et al. Development of fibroblast activation protein-targeted radiotracers with improved tumor retention. J Nucl Med. 2019;60:1421–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Loktev A, Lindner T, Mier W, et al. A tumor-imaging method targeting cancer-associated fibroblasts. J Nucl Med. 2018;59:1423–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lindner T, Loktev A, Altmann A, et al. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J Nucl Med. 2018;59:1415–22.

    Article  CAS  PubMed  Google Scholar 

  11. Liu Y, Watabe T, Kaneda-Nakashima K, et al. Fibroblast activation protein targeted therapy using [177Lu]FAPI-46 compared with [225Ac]FAPI-46 in a pancreatic cancer model. Euro J Nucl Med Mol Imaging. 2022;49:871–80.

    Article  CAS  Google Scholar 

  12. Watabe T, Liu Y, Kaneda-Nakashima K, et al. Theranostics targeting fibroblast activation protein in the tumor stroma: 64Cu- and 225Ac-Labeled FAPI-04 in pancreatic cancer xenograft mouse models. J Nucl Med. 2020;61:563–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ahenkorah S, Cassells I, Deroose CM, et al. Bismuth-213 for targeted radionuclide therapy: from atom to bedside. Pharmaceutics. 2021;13:599.

  14. Altmann A, Haberkorn U, Siveke J. The latest developments in imaging of fibroblast activation protein. J Nucl Med. 2021;62:160–7.

    Article  CAS  PubMed  Google Scholar 

  15. Kratochwil C, Giesel FL, Rathke H, et al. [153Sm]Samarium-labeled FAPI-46 radioligand therapy in a patient with lung metastases of a sarcoma. Eur J Nucl Med Mol Imaging. 2021;48:3011–3.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu Z, Pourghiasian M, Radtke MA, et al. An organotrifluoroborate for broadly applicable one-step 18F-labeling. Angew Chem Int Ed Engl. 2014;53:11876–80.

    Article  CAS  PubMed  Google Scholar 

  17. Liu Z, Lin KS, Benard F, et al. One-step 18F labeling of biomolecules using organotrifluoroborates. Nat Protoc. 2015;10:1423–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu M, Zhang P, Ding J, Chen J, Huo L, Liu Z. Albumin binder-conjugated fibroblast activation protein inhibitor radiopharmaceuticals for cancer therapy. J Nucl Med. 2022;63:952–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morgenstern A, Apostolidis C, Bruchertseifer F. Supply and clinical application of Actinium-225 and Bismuth-213. Semin Nucl Med. 2020;50:119–23.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kuyumcu S, Kovan B, Sanli Y, et al. Safety of fibroblast activation protein-targeted radionuclide therapy by a low-dose dosimetric approach using 177Lu-FAPI04. Clin Nucl Med. 2021;46:641–6.

    Article  PubMed  Google Scholar 

  21. Price EW, Orvig C. Matching chelators to radiometals for radiopharmaceuticals. Chem Soc Rev. 2014;43:260–90.

    Article  CAS  PubMed  Google Scholar 

  22. Wurzer A, Di Carlo D, Schmidt A, et al. Radiohybrid ligands: a novel tracer concept exemplified by 18F- or 68Ga-labeled rhPSMA inhibitors. J Nucl Med. 2020;61:735–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rohrich M, Loktev A, Wefers AK, et al. IDH-wildtype glioblastomas and grade III/IV IDH-mutant gliomas show elevated tracer uptake in fibroblast activation protein-specific PET/CT. Eur J Nucl Med Mol Imaging. 2019;46:2569–80.

    Article  PubMed  Google Scholar 

  24. Meyer C, Dahlbom M, Lindner T, et al. Radiation dosimetry and biodistribution of 68Ga-FAPI-46 PET imaging in cancer patients. J Nucl Med. 2020;61:1171–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ferdinandus J, Fragoso Costa P, Kessler L, et al. Initial clinical experience with 90Y-FAPI-46 radioligand therapy for advanced stage solid tumors: a case series of nine patients. J Nucl Med. 2022;63:727–34.

    PubMed  PubMed Central  Google Scholar 

  26. Jung HJ, Nam EH, Park JY, Ghosh P, Kim IS. Identification of BR102910 as a selective fibroblast activation protein (FAP) inhibitor. Bioorg Med Chem Lett. 2021;37:127846.

    Article  CAS  PubMed  Google Scholar 

  27. Younis MH, Malih S, Lan X, Rasaee MJ, Cai W. Enhancing fibroblast activation protein (FAP)-targeted radionuclide therapy with albumin binding, and beyond. Eur J Nucl Med Mol Imaging. 2022;49:1773–7.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hasan M. Fundamentals of radiation oncology, 3rd ed. Academic Press; 2019. p. 57–87. https://doi.org/10.1016/C2018-0-04417-5

  29. Thomas IK, Chris O. Radioactive main group and rare earth metals for imaging and therapy. Chem Rev. 2019;119:902–56.

    Article  Google Scholar 

  30. Dolgin E. Drugmakers go nuclear, continuing push into radiopharmaceuticals. Nat Biotechnol. 2021;39:647–9.

    Article  CAS  PubMed  Google Scholar 

  31. Kratochwil C, Schmidt K, Afshar-Oromieh A, et al. Targeted alpha therapy of mCRPC: dosimetry estimate of 213Bismuth-PSMA-617. Eur J Nucl Med Mol Imaging. 2018;45:31–7.

    Article  CAS  PubMed  Google Scholar 

  32. Chappell LL, Dadachova E, Milenic DE, Garmestani K, Wu C, Brechbiel MW. Synthesis, characterization, and evaluation of a novel bifunctional chelating agent for the lead isotopes 203Pb and 212Pb. Nucl Med Biol. 2000;27:93–100.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the facility support from the Analytical Instrumentation Center of Peking University.

Funding

We gratefully acknowledge the Beijing Municipal Natural Science Foundation (Grant No. Z200018), the National Natural Science Foundation of China (Grant No. U1867209), the Ministry of Science and Technology of the People’s Republic of China (Grant Nos. 2021YFA1601400 and 2017YFA0506300), the Special Foundation of Beijing Municipal Education Commission (Grant No. 3500–12020123), and the Li Ge-Zhao Ning Life Science Youth Research Foundation (LGZNQN202004) to Z.L.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. participated in all the experiments. H.T. and T.S. assisted in cell and animal experiments. M.X. and J.C. provided radionuclides and guided the radiolabeling. Y.L. and XY.C. wrote the manuscipt. Y.H. and Z.L. helped analyze the experimental data. Z.L. designed the study and revised the manuscipt. All authors read and approved the final manuscript.”

Corresponding author

Correspondence to Zhibo Liu.

Ethics declarations

Ethics approval

The ethics approval was granted by the Ethics Committee of Peking University (CCME-LiuZB-2).

Competing interests

The authors declare competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Theragnostic.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2.21 mb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Tang, H., Song, T. et al. Organotrifluoroborate enhances tumor targeting of fibroblast activation protein inhibitors for targeted radionuclide therapy. Eur J Nucl Med Mol Imaging 50, 2636–2646 (2023). https://doi.org/10.1007/s00259-023-06230-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-023-06230-3

Keywords

Navigation