Skip to main content

Advertisement

Log in

Anti-GD2 antibody for radiopharmaceutical imaging of osteosarcoma

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Osteosarcoma (OS) is the most frequently diagnosed bone cancer in children with little improvement in overall survival in the past decades. The high surface expression of disialoganglioside GD2 on OS tumors and restricted expression in normal tissues makes it an ideal target for anti-OS radiopharmaceuticals. Since human and canine OS share many biological and molecular features, spontaneously occurring OS in canines has been an ideal model for testing new imaging and treatment modalities for human translation. In this study, we evaluated a humanized anti-GD2 antibody, hu3F8, as a potential delivery vector for targeted radiopharmaceutical imaging of human and canine OS.

Methods

The cross-reactivity of hu3F8 with human and canine OS cells and tumors was examined by immunohistochemistry and flow cytometry. The hu3F8 was radiolabeled with indium-111, and the biodistribution of [111In]In-hu3F8 was assessed in tumor xenograft-bearing mice. The targeting ability of [111In]In-hu3F8 to metastatic OS was tested in spontaneous OS canines.

Results

The hu3F8 cross reacts with human and canine OS cells and canine OS tumors with high binding affinity. Biodistribution studies revealed selective uptake of [111In]In-hu3F8 in tumor tissue. SPECT/CT imaging of spontaneous OS canines demonstrated avid uptake of [111In]In-hu3F8 in all metastatic lesions. Immunohistochemistry confirmed the extensive binding of radiolabeled hu3F8 within both osseous and soft lesions.

Conclusion

This study demonstrates the feasibility of targeting GD2 on OS cells and spontaneous OS canine tumors using hu3F8-based radiopharmaceutical imaging. Its ability to deliver an imaging payload in a targeted manner supports the utility of hu3F8 for precision imaging of OS and potential future use in radiopharmaceutical therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data associated with this study are present in the paper or the Supplementary Materials.

References

  1. Roberts RD, Lizardo MM, Reed DR, Hingorani P, Glover J, Allen-Rhoades W, et al. Provocative questions in osteosarcoma basic and translational biology: a report from the Children’s Oncology Group. Cancer. 2019;125:3514–25. https://doi.org/10.1002/cncr.32351.

    Article  PubMed  Google Scholar 

  2. Sampson VB, Gorlick R, Kamara D, Anders KE. A review of targeted therapies evaluated by the pediatric preclinical testing program for osteosarcoma. Front Oncol. 2013;3:132. https://doi.org/10.3389/fonc.2013.00132.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gorlick R, Janeway K, Lessnick S, Randall RL, Marina N. Children’s Oncology Group’s 2013 blueprint for research: bone tumors. Pediatr Blood Cancer. 2013;60:1009–15. https://doi.org/10.1002/pbc.24429.

    Article  PubMed  Google Scholar 

  4. Kansara M, Teng MW, Smyth MJ, Thomas DM. Translational biology of osteosarcoma. Nat Rev Cancer. 2014;14:722–35. https://doi.org/10.1038/nrc3838.

    Article  CAS  PubMed  Google Scholar 

  5. Heiner JP, Miraldi F, Kallick S, Makley J, Neely J, Smith-Mensah WH, et al. Localization of GD2-specific monoclonal antibody 3F8 in human osteosarcoma. Cancer Res. 1987;47:5377–81.

    CAS  PubMed  Google Scholar 

  6. Poon VI, Roth M, Piperdi S, Geller D, Gill J, Rudzinski ER, et al. Ganglioside GD2 expression is maintained upon recurrence in patients with osteosarcoma. Clin Sarcoma Res. 2015;5:4. https://doi.org/10.1186/s13569-014-0020-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nazha B, Inal C, Owonikoko TK. Disialoganglioside GD2 expression in solid tumors and role as a target for cancer therapy. Front Oncol. 2020;10:1000. https://doi.org/10.3389/fonc.2020.01000.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Modak S, Le Luduec JB, Cheung IY, Goldman DA, Ostrovnaya I, Doubrovina E, et al. Adoptive immunotherapy with haploidentical natural killer cells and Anti-GD2 monoclonal antibody m3F8 for resistant neuroblastoma: results of a phase I study. Oncoimmunology. 2018;7: e1461305. https://doi.org/10.1080/2162402x.2018.1461305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Butch ER, Mead PE, Amador Diaz V, Tillman H, Stewart E, Mishra JK, et al. Positron emission tomography detects in vivo expression of disialoganglioside GD2 in mouse models of primary and metastatic osteosarcoma. Cancer Res. 2019;79:3112–24. https://doi.org/10.1158/0008-5472.Can-18-3340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roth M, Linkowski M, Tarim J, Piperdi S, Sowers R, Geller D, et al. Ganglioside GD2 as a therapeutic target for antibody-mediated therapy in patients with osteosarcoma. Cancer. 2014;120:548–54. https://doi.org/10.1002/cncr.28461.

    Article  CAS  PubMed  Google Scholar 

  11. Dobrenkov K, Cheung NK. GD2-targeted immunotherapy and radioimmunotherapy. Semin Oncol. 2014;41:589–612. https://doi.org/10.1053/j.seminoncol.2014.07.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cheung NK, Cheung IY, Kushner BH, Ostrovnaya I, Chamberlain E, Kramer K, et al. Murine anti-GD2 monoclonal antibody 3F8 combined with granulocyte-macrophage colony-stimulating factor and 13-cis-retinoic acid in high-risk patients with stage 4 neuroblastoma in first remission. J Clin Oncol. 2012;30:3264–70. https://doi.org/10.1200/jco.2011.41.3807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cheung NK, Guo H, Hu J, Tassev DV, Cheung IY. Humanizing murine IgG3 anti-GD2 antibody m3F8 substantially improves antibody-dependent cell-mediated cytotoxicity while retaining targeting in vivo. Oncoimmunology. 2012;1:477–86.

    Article  Google Scholar 

  14. Markham A. Naxitamab: first approval. Drugs. 2021;81:291–6. https://doi.org/10.1007/s40265-021-01467-4.

    Article  CAS  PubMed  Google Scholar 

  15. Fenger JM, London CA, Kisseberth WC. Canine osteosarcoma: a naturally occurring disease to inform pediatric oncology. ILAR J. 2014;55:69–85. https://doi.org/10.1093/ilar/ilu009.

    Article  CAS  PubMed  Google Scholar 

  16. MacEwen EG. Spontaneous tumors in dogs and cats: models for the study of cancer biology and treatment. Cancer Metastasis Rev. 1990;9:125–36.

    Article  CAS  Google Scholar 

  17. Karkare S, Allen KJH, Jiao R, Malo ME, Dawicki W, Helal M, et al. Detection and targeting insulin growth factor receptor type 2 (IGF2R) in osteosarcoma PDX in mouse models and in canine osteosarcoma tumors. Sci Rep. 2019;9:11476. https://doi.org/10.1038/s41598-019-47808-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Westrøm S, Bønsdorff TB, Abbas N, Bruland ØS, Jonasdottir TJ, Mælandsmo GM, et al. Evaluation of CD146 as target for radioimmunotherapy against osteosarcoma. PLoS ONE. 2016;11: e0165382. https://doi.org/10.1371/journal.pone.0165382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sgouros G, Bodei L, McDevitt MR, Nedrow JR. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat Rev Drug Discov. 2020;19:589–608. https://doi.org/10.1038/s41573-020-0073-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miederer M, McDevitt MR, Borchardt P, Bergman I, Kramer K, Cheung NK, et al. Treatment of neuroblastoma meningeal carcinomatosis with intrathecal application of alpha-emitting atomic nanogenerators targeting disialo-ganglioside GD2. Clin Cancer Res. 2004;10:6985–92. https://doi.org/10.1158/1078-0432.CCR-04-0859.

    Article  CAS  PubMed  Google Scholar 

  21. Senthamizhchelvan S, Hobbs RF, Song H, Frey EC, Zhang Z, Armour E, et al. Tumor dosimetry and response for 153Sm-ethylenediamine tetramethylene phosphonic acid therapy of high-risk osteosarcoma. J Nucl Med. 2012;53:215–24. https://doi.org/10.2967/jnumed.111.096677.

    Article  CAS  PubMed  Google Scholar 

  22. Brechbiel MW. Bifunctional chelates for metal nuclides. Q J Nucl Med Mol Imaging. 2008;52:166–73.

    CAS  PubMed  Google Scholar 

  23. Nedrow JR, Josefsson A, Park S, Ranka S, Roy S, Sgouros G. Imaging of programmed cell death ligand 1: impact of protein concentration on distribution of anti-PD-L1 SPECT agents in an immunocompetent murine model of melanoma. J Nucl Med. 2017;58:1560–6. https://doi.org/10.2967/jnumed.117.193268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cortez A, Josefsson A, McCarty G, Shtekler AE, Rao A, Austin Z, et al. Evaluation of [(225)Ac]Ac-DOTA-anti-VLA-4 for targeted alpha therapy of metastatic melanoma. Nucl Med Biol. 2020;88–89:62–72. https://doi.org/10.1016/j.nucmedbio.2020.07.006.

    Article  CAS  PubMed  Google Scholar 

  25. Dobrenkov K, Ostrovnaya I, Gu J, Cheung IY, Cheung NK. Oncotargets GD2 and GD3 are highly expressed in sarcomas of children, adolescents, and young adults. Pediatr Blood Cancer. 2016;63:1780–5. https://doi.org/10.1002/pbc.26097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Harrison DJ, Geller DS, Gill JD, Lewis VO, Gorlick R. Current and future therapeutic approaches for osteosarcoma. Expert Rev Anticancer Ther. 2018;18:39–50. https://doi.org/10.1080/14737140.2018.1413939.

    Article  CAS  PubMed  Google Scholar 

  27. Beaino W, Nedrow JR, Anderson CJ. Evaluation of (68)Ga- and (177)Lu-DOTA-PEG4-LLP2A for VLA-4-targeted PET imaging and treatment of metastatic melanoma. Mol Pharm. 2015;12:1929–38. https://doi.org/10.1021/mp5006917[doi].

  28. Geller DS, Morris J, Revskaya E, Kahn M, Zhang W, Piperdi S, et al. Targeted therapy of osteosarcoma with radiolabeled monoclonal antibody to an insulin-like growth factor-2 receptor (IGF2R). Nucl Med Biol. 2016;43:812–7. https://doi.org/10.1016/j.nucmedbio.2016.07.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li HK, Hasegawa S, Nakajima NI, Morokoshi Y, Minegishi K, Nagatsu K. Targeted cancer cell ablation in mice by an α-particle-emitting astatine-211-labeled antibody against major histocompatibility complex class I chain-related protein A and B. Biochem Biophys Res Commun. 2018;506:1078–84. https://doi.org/10.1016/j.bbrc.2018.10.157.

    Article  CAS  PubMed  Google Scholar 

  30. Park JS, Withers SS, Modiano JF, Kent MS, Chen M, Luna JI, et al. Canine cancer immunotherapy studies: linking mouse and human. J Immunother Cancer. 2016;4:97. https://doi.org/10.1186/s40425-016-0200-7.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Magee K, Marsh IR, Turek MM, Grudzinski J, Aluicio-Sarduy E, Engle JW, et al. Safety and feasibility of an in situ vaccination and immunomodulatory targeted radionuclide combination immuno-radiotherapy approach in a comparative (companion dog) setting. PLoS ONE. 2021;16: e0255798. https://doi.org/10.1371/journal.pone.0255798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Broqueza J, Prabaharan CB, Andrahennadi S, Allen KJH, Dickinson R, MacDonald-Dickinson V, et al. Novel human antibodies to insulin growth factor 2 receptor (IGF2R) for radioimmunoimaging and therapy of canine and human osteosarcoma. Cancers (Basel). 2021;13. doi:https://doi.org/10.3390/cancers13092208.

  33. Broqueza J, Prabaharan CB, Allen KJH, Jiao R, Fisher DR, Dickinson R, et al. Radioimmunotherapy targeting IGF2R on canine-patient-derived osteosarcoma tumors in mice and radiation dosimetry in canine and pediatric models. Pharmaceuticals (Basel). 2021;15. doi:https://doi.org/10.3390/ph15010010.

  34. F Navid PM Sondel R Barfield BL Shulkin RA Kaufman JA Allay et al 2014 Phase I trial of a novel anti-GD2 monoclonal antibody Hu14.18K322A designed to decrease toxicity in children with refractory or recurrent neuroblastoma J Clin Oncol. 32 1445 52 https://doi.org/10.1200/jco.2013.50.4423

Download references

Funding

This work was supported by the National Institutes Health grants: R01 CA116477, R01 CA187037, and R01 CA239124.

Author information

Authors and Affiliations

Authors

Contributions

Y. F., J. Y., and I. L. designed and performed all the murine experiments and collected and analyzed the data. Y. F. and J. Y. wrote the original manuscript, and all authors reviewed and edited the manuscript.

Y. D., A. J., and J. N. collected, analyzed, and interpreted data from SPECT/CT images.

H. R. and J. B. collected and analyzed flow cytometry data.

D. L. K. and G. S. acquired funding, directed the research, and supervised in the design and interpretation of the experiments and the writing of the manuscript.

D. L. K. performed all the canine experiments.

Corresponding author

Correspondence to George Sgouros.

Ethics declarations

Ethics approval and consent to participate

Animal protocols were approved by the Animal Care and Use Committee of the Johns Hopkins University, School of Medicine. Client-owned dogs with confirmed metastatic OS were recruited from owners with written informed consent.

Conflict of interest

The authors report no relevant conflicts of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Translational research.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13.6 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Yu, J., Liatsou, I. et al. Anti-GD2 antibody for radiopharmaceutical imaging of osteosarcoma. Eur J Nucl Med Mol Imaging 49, 4382–4393 (2022). https://doi.org/10.1007/s00259-022-05888-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-022-05888-5

Keywords

Navigation