Skip to main content

Advertisement

Log in

A simple strategy to reduce the salivary gland and kidney uptake of PSMA-targeting small molecule radiopharmaceuticals

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Peptide-based prostate-specific membrane antigen (PSMA) targeted radionuclide therapy (TRT) agent [177Lu]-PSMA-617 has emerged as leading TRT candidate for treatment of castration-resistant prostate cancer (mCRPC). [177Lu]-PSMA-617 and other small molecule–based PSMA ligands have shown efficacy in reducing the tumor burden in mCRPC patients but irradiation to the salivary gland and kidneys is a concern and dose-limiting factor. Therefore, methods to reduce non-target organ toxicity are needed to safely treat patients and preserve their quality of life. Herein, we report that addition of cold PSMA ligand PSMA-11 can aid in reducing the uptake of [177Lu]-PSMA-617 in the salivary glands and kidneys.

Methods

Groups of athymic nude mice (n = 4) bearing PC3-PIP (PSMA+) tumor xenografts were administered with [177Lu]-PSMA-617 along with 0, 5, 100, 500, 1000, and 2000 pmoles of PSMA-11 and biodistribution studies were performed at 1 h.

Results

Biodistribution studies at 1 h post-administration revealed that [177Lu]-PSMA-617 uptake in PC3-PIP tumors was 21.71 ± 6.13, 18.7 ± 2.03, 26.44 ± 2.94, 16.21 ± 3.5, 13.52 ± 3.68, and 12.03 ± 1.96 %ID/g when 0, 5, 100, 500, 1000, and 2000 pmoles of PSMA-11 were added, respectively. Corresponding uptake values in kidney were 123.14 ± 52.52, 132.31 ± 47.4, 84.29 ± 78.25, 2.12 ± 1.88, 1.16 ± 0.36, and 0.64 ± 0.23 %ID/g, respectively. Corresponding salivary gland uptake values were 0.48 ± 0.11, 0.45 ± 0.15, 0.38 ± 0.3, 0.08 ± 0.03, 0.09 ± 0.07, and 0.05 ± 0.02 % ID/g, respectively.

Conclusion

The uptake of [177Lu]-PSMA-617 in the salivary gland and kidney can be substantially reduced without significantly impacting tumor uptake by adding cold PSMA-11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30. https://doi.org/10.3322/caac.21590.

    Article  PubMed  Google Scholar 

  2. Kratochwil C, Haberkorn U, Giesel FL. Radionuclide therapy of metastatic prostate cancer. Semin Nucl Med. 2019;49:313–25. https://doi.org/10.1053/j.semnuclmed.2019.02.003.

    Article  PubMed  Google Scholar 

  3. O’Keefe DS, Bacich DJ, Heston WD. Comparative analysis of prostate-specific membrane antigen (PSMA) versus a prostate-specific membrane antigen-like gene. Prostate. 2004;58:200–10. https://doi.org/10.1002/pros.10319.

    Article  CAS  PubMed  Google Scholar 

  4. Evans MJ, Smith-Jones PM, Wongvipat J, Navarro V, Kim S, Bander NH, et al. Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen. Proc Natl Acad Sci U S A. 2011;108:9578–82. https://doi.org/10.1073/pnas.1106383108.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Uchida A, O’Keefe DS, Bacich DJ, Molloy PL, Heston WDW. In vivo suicide gene therapy model using a newly discovered prostate-specific membrane antigen promoter/enhancer: a potential alternative approach to androgen deprivation therapy. Urology. 2001;58:132–9. https://doi.org/10.1016/S0090-4295(01)01256-0.

    Article  CAS  PubMed  Google Scholar 

  6. Yu YP, Landsittel D, Jing L, Nelson J, Ren B, Liu L, et al. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol. 2004;22:2790–9. https://doi.org/10.1200/JCO.2004.05.158.

    Article  CAS  PubMed  Google Scholar 

  7. Kawakami M, Nakayama J. Enhanced expression of prostate-specific membrane antigen gene in prostate cancer as revealed by in situ hybridization. Cancer Res. 1997;57:2321–4.

    CAS  PubMed  Google Scholar 

  8. Denmeade SR, Sokoll LJ, Dalrymple S, Rosen DM, Gady AM, Bruzek D, et al. Dissociation between androgen responsiveness for malignant growth vs. expression of prostate specific differentiation markers PSA, hK2, and PSMA in human prostate cancer models. Prostate. 2003;54:249–57. https://doi.org/10.1002/pros.10199.

    Article  CAS  PubMed  Google Scholar 

  9. Kratochwil C, Giesel FL, Stefanova M, Benesova M, Bronzel M, Afshar-Oromieh A, et al. PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with 177Lu-labeled PSMA-617. J Nucl Med. 2016;57:1170–6. https://doi.org/10.2967/jnumed.115.171397.

    Article  CAS  PubMed  Google Scholar 

  10. Han M, Partin AW. Current clinical applications of the in-capromab pendetide scan (ProstaScint(R) Scan, Cyt-356). Rev Urol. 2001;3:165–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pandit-Taskar N, O’Donoghue JA, Durack JC, Lyashchenko SK, Cheal SM, Beylergil V, et al. A phase I/II study for analytic validation of 89Zr-J591 immunoPET as a molecular imaging agent for metastatic prostate cancer. Clin Cancer Res. 2015;21:5277–85. https://doi.org/10.1158/1078-0432.CCR-15-0552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pandit-Taskar N, O’Donoghue JA, Divgi CR, Wills EA, Schwartz L, Gonen M, et al. Indium 111-labeled J591 anti-PSMA antibody for vascular targeted imaging in progressive solid tumors. EJNMMI Res. 2015;5:28. https://doi.org/10.1186/s13550-015-0104-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tagawa ST, Milowsky MI, Morris M, Vallabhajosula S, Christos P, Akhtar NH, et al. Phase II study of Lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res. 2013;19:5182–91. https://doi.org/10.1158/1078-0432.CCR-13-0231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vallabhajosula S, Goldsmith SJ, Kostakoglu L, Milowsky MI, Nanus DM, Bander NH. Radioimmunotherapy of prostate cancer using Y-90- and Lu-177-labeled J591 monoclonal antibodies: effect of multiple treatments on myelotoxicity. Clin Cancer Res. 2005;11:7195 s–200 s. https://doi.org/10.1158/1078-0432.CCR-1004-0023.

    Article  CAS  Google Scholar 

  15. Kiess AP, Banerjee SR, Mease RC, Rowe SP, Rao A, Foss CA, et al. Prostate-specific membrane antigen as a target for cancer imaging and therapy. Q J Nucl Med Mol Imaging. 2015;59:241–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pandit-Taskar N, O’Donoghue JA, Ruan S, Lyashchenko SK, Carrasquillo JA, Heller G, et al. First-in-human imaging with 89Zr-Df-IAB2M anti-PSMA minibody in patients with metastatic prostate cancer: pharmacokinetics, biodistribution, dosimetry, and lesion uptake. J Nucl Med. 2016;57:1858–64. https://doi.org/10.2967/jnumed.116.176206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Frigerio B, Morlino S, Luison E, Seregni E, Lorenzoni A, Satta A, et al. Anti-PSMA I-124-scFvD2B as a new immuno-PET tool for prostate cancer: preclinical proof of principle. J Exp Clin Cancer Res. 2019:38. https://doi.org/10.1186/S13046-019-1325-6.

  18. Nawaz S, Mullen GED, Sunassee K, Bordoloi J, Blower PJ, Ballinger JR. Simple, mild, one-step labelling of proteins with gallium-68 using a tris(hydroxypyridinone) bifunctional chelator: a Ga-68-THP-scFv targeting the prostate-specific membrane antigen. EJNMMI Res. 2017:7. https://doi.org/10.1186/s13550-017-0336-6.

  19. Foss CA, Mease RC, Fan H, Wang Y, Ravert HT, Dannals RF, et al. Radiolabeled small-molecule ligands for prostate-specific membrane antigen: in vivo imaging in experimental models of prostate cancer. Clin Cancer Res. 2005;11:4022–8. https://doi.org/10.1158/1078-0432.CCR-04-2690.

    Article  CAS  PubMed  Google Scholar 

  20. Rowe SP, Drzezga A, Neumaier B, Dietlein M, Gorin MA, Zalutsky MR, et al. Prostate-specific membrane antigen-targeted radiohalogenated PET and therapeutic agents for prostate cancer. J Nucl Med. 2016;57:90S–6S. https://doi.org/10.2967/jnumed.115.170175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Afshar-Oromieh A, Babich JW, Kratochwil C, Giesel FL, Eisenhut M, Kopka K, et al. The rise of PSMA ligands for diagnosis and therapy of prostate cancer. J Nucl Med. 2016;57:79s–89s. https://doi.org/10.2967/jnumed.115.170720.

    Article  CAS  PubMed  Google Scholar 

  22. Wester HJ, Schottelius M. PSMA-targeted radiopharmaceuticals for imaging and therapy. Semin Nucl Med. 2019;49:302–12. https://doi.org/10.1053/j.semnuclmed.2019.02.008.

    Article  PubMed  Google Scholar 

  23. Afshar-Oromieh A, Haberkorn U, Eder M, Eisenhut M, Zechmann CM. [Ga-68]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with F-18-FECH. Eur J Nucl Med Mol Imaging. 2012;39:1085–6. https://doi.org/10.1007/s00259-012-2069-0.

    Article  CAS  PubMed  Google Scholar 

  24. Afshar-Oromieh A, Malcher A, Eder M, Eisenhut M, Linhart HG, Hadaschik BA, et al. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging. 2013;40:486–95. https://doi.org/10.1007/s00259-012-2298-2.

    Article  CAS  PubMed  Google Scholar 

  25. Zechmann CM, Afshar-Oromieh A, Armor T, Stubbs JB, Mier W, Hadaschik B, et al. Radiation dosimetry and first therapy results with a (124)I/(131)I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur J Nucl Med Mol Imaging. 2014;41:1280–92. https://doi.org/10.1007/s00259-014-2713-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. https://www.proteinatlas.org/ENSG00000086205-FOLH1/tissue.

  27. Hofman MS, Hicks RJ, Maurer T, Eiber M. Prostate-specific membrane antigen PET: clinical utility in prostate cancer, normal patterns, pearls, and pitfalls. Radiographics. 2018;38:200–17. https://doi.org/10.1148/rg.2018170108.

    Article  PubMed  Google Scholar 

  28. Hofman MS, Violet J, Hicks RJ, Ferdinandus J, Thang SP, Akhurst T, et al. [(177)Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. 2018;19:825–33. https://doi.org/10.1016/S1470-2045(18)30198-0.

    Article  CAS  PubMed  Google Scholar 

  29. Fendler WP, Reinhardt S, Ilhan H, Delker A, Boning G, Gildehaus FJ, et al. Preliminary experience with dosimetry, response and patient reported outcome after 177Lu-PSMA-617 therapy for metastatic castration-resistant prostate cancer. Oncotarget. 2017;8:3581–90. https://doi.org/10.18632/oncotarget.12240.

    Article  PubMed  Google Scholar 

  30. Pillarsetty N, Kalidindi T, Carlin S, Easwaramoorthy B, Abbasi A, Larson S, et al. Effect of specific activity on the uptake of 68Ga -DKFZ-PSMA11 in tumor and other organs. J Nucl Med. 2016;57:2.

    Google Scholar 

  31. Ahad A, Easwaroorthy B, Zhang HW, Pillarsetty N, Alidindi T, Punzalan B, et al. Cyclotron produced Ga-68 for PET imaging of prostate cancer. J Nucl Med. 2018;59:2.

    Google Scholar 

  32. Sartor AO, Morris MJ, Krause BJ. VISION: An international, prospective, open-label, multicenter, randomized phase 3 study of 177Lu-PSMA-617 in the treatment of patients with progressive PSMA-positive metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2019;37:TPS5099-TPS. https://doi.org/10.1200/JCO.2019.37.15_suppl.TPS5099.

    Article  Google Scholar 

  33. Sathekge M, Bruchertseifer F, Knoesen O, Reyneke F, Lawal I, Lengana T, et al. (225)Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: a pilot study. Eur J Nucl Med Mol Imaging. 2019;46:129–38. https://doi.org/10.1007/s00259-018-4167-0.

    Article  CAS  PubMed  Google Scholar 

  34. Kratochwil C, Bruchertseifer F, Giesel FL, Weis M, Verburg FA, Mottaghy F, et al. 225Ac-PSMA-617 for PSMA-targeted a-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med. 2016;57:1941–4. https://doi.org/10.2967/jnumed.116.178673.

    Article  CAS  PubMed  Google Scholar 

  35. Assadi M, Rezaei S, Jafari E, Rekabpour SJ, Ravanbod MR, Zohrabi F, et al. Potential application of lutetium-177-labeled prostate-specific membrane antigen-617 radioligand therapy for metastatic castration-resistant prostate cancer in a limited resource environment: Initial clinical experience after 2 years. World J Nucl Med. 2020;19:15–20. https://doi.org/10.4103/wjnm.WJNM_20_19.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rousseau E, Lau J, Kuo HT, Zhang Z, Merkens H, Hundal-Jabal N, et al. Monosodium glutamate reduces (68)Ga-PSMA-11 uptake in salivary glands and kidneys in a preclinical prostate cancer model. J Nucl Med. 2018;59:1865–8. https://doi.org/10.2967/jnumed.118.215350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rathke H, Kratochwil C, Hohenberger R, Giesel FL, Bruchertseifer F, Flechsig P, et al. Initial clinical experience performing sialendoscopy for salivary gland protection in patients undergoing (225)Ac-PSMA-617 RLT. Eur J Nucl Med Mol Imaging. 2019;46:139–47. https://doi.org/10.1007/s00259-018-4135-8.

    Article  CAS  PubMed  Google Scholar 

  38. Yilmaz B, Nisli S, Ergul N, Gursu RU, Acikgoz O, Cermik TF. Effect of external cooling on (177)Lu-PSMA uptake by the parotid glands. J Nucl Med. 2019;60:1388–93. https://doi.org/10.2967/jnumed.119.226449.

    Article  CAS  PubMed  Google Scholar 

  39. Kalidindi TM, Lee SG, Punzalan B, Veach D, Jou K, Chakraborty G, et al. Effect of reducing specific activity of [177Lu]-DKFZ-PSMA617 on uptake in the tumor, salivary gland and kidney. J Nucl Med. 2020;61:230.

    Google Scholar 

  40. Zang J, Fan X, Wang H, Liu Q, Wang J, Li H, et al. First-in-human study of (177)Lu-EB-PSMA-617 in patients with metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2019;46:148–58. https://doi.org/10.1007/s00259-018-4096-y.

    Article  CAS  PubMed  Google Scholar 

  41. Heck MM, Tauber R, Schwaiger S, Retz M, D’Alessandria C, Maurer T, et al. Treatment outcome, toxicity, and predictive factors for radioligand therapy with (177)Lu-PSMA-I&T in metastatic castration-resistant prostate cancer. Eur Urol. 2019;75:920–6. https://doi.org/10.1016/j.eururo.2018.11.016.

    Article  CAS  PubMed  Google Scholar 

  42. Kalidindi TM, Lee S-G, Lewis J, Larson S, Pillarsetty N. Novel radioiodinated theranostic agent targeting PSMA for Prostate cancer. J Nucl Med. 2020;61:383.

    Google Scholar 

  43. Kalidindi TM, Lee S-G, Jou K, Chakraborty G, Skafida M, Tagawa ST, et al. A simple strategy to reduce the salivary gland and kidney uptake of PSMA targeting small molecule radiopharmaceuticals. bioRxiv. 2020. https://doi.org/10.1101/2020.07.24.220277.

  44. Nicolas GP, Mansi R, McDougall L, Kaufmann J, Bouterfa H, Wild D, et al. Biodistribution, pharmacokinetics, and dosimetry of (177)Lu-, (90)Y-, and (111)In-labeled somatostatin receptor antagonist OPS201 in comparison to the agonist (177)Lu-DOTATATE: the mass effect. J Nucl Med. 2017;58:1435–41. https://doi.org/10.2967/jnumed.117.191684.

    Article  CAS  PubMed  Google Scholar 

  45. Moroz A, Lee CY, Wang YH, Hsiao JC, Sevillano N, Truillet C, et al. A preclinical assessment of (89)Zr-atezolizumab identifies a requirement for carrier added formulations not observed with (89)Zr-C4. Bioconjug Chem. 2018;29:3476–82. https://doi.org/10.1021/acs.bioconjchem.8b00632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Meibohm B, Zhou H. Characterizing the impact of renal impairment on the clinical pharmacology of biologics. J Clin Pharmacol. 2012;52:54S–62S. https://doi.org/10.1177/0091270011413894.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by NIH/NCI R01CA207645-0 (JO, NP), DoD PCRP Idea Award W81XWH-19-1-0536 (NP), and NIH/NCI R35 CA232130 (JSL) grants. Technical and facility services provided by the Center of Comparative Medicine & Pathology were supported in part by NIH Grant P30 CA008748. Dr. Chakraborty is supported by PCF young investigator award. 

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joseph R. Osborne or Naga Vara Kishore Pillarsetty.

Ethics declarations

Conflict of interest

Dr. Tagawa has served as a consultant for Endocyte and Advanced Accelerator Applications/Novartis and has received institutional research funding from Advanced Accelerator Applications/Novartis. Cornell University holds the intellectual rights for anti-PSMA antibody technology invented by Dr. Bander, that has have been licensed to BZL Biologics, LLC. NB holds equity in BZL biologics and Telix Pharmaceuticals (also serves as uncompensated SAB). All other authors declare no conflict of interest.

Ethical approval

All animal studies were approved by MSKCC-IACUC that ensures that all international, national, and institutional guidelines for the care and use of animals were followed. This study does not contain any studies with human participants.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Translational research

Supporting information

ESM 1

(PNG 109 kb)

ESM 2

(PNG 2776 kb)

ESM 3

(DOCX 818 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalidindi, T.M., Lee, SG., Jou, K. et al. A simple strategy to reduce the salivary gland and kidney uptake of PSMA-targeting small molecule radiopharmaceuticals. Eur J Nucl Med Mol Imaging 48, 2642–2651 (2021). https://doi.org/10.1007/s00259-020-05150-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-020-05150-w

Keywords

Navigation