Skip to main content

Advertisement

Log in

A kinetics-based approach to amyloid PET semi-quantification

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To develop and validate a semi-quantification method (time-delayed ratio, TDr) applied to amyloid PET scans, based on tracer kinetics information.

Methods

The TDr method requires two static scans per subject: one early (~ 0–10 min after the injection) and one late (typically 50–70 min or 90–100 min after the injection, depending on the tracer). High perfusion regions are delineated on the early scan and applied onto the late scan. A SUVr-like ratio is calculated between the average intensities in the high perfusion regions and the late scan hotspot. TDr was applied to a naturalistic multicenter dataset of 143 subjects acquired with [18F]florbetapir. TDr values are compared to visual evaluation, cortical–cerebellar SUVr, and to the geometrical semi-quantification method ELBA. All three methods are gauged versus the heterogeneity of the dataset.

Results

TDr shows excellent agreement with respect to the binary visual assessment (AUC = 0.99) and significantly correlates with both validated semi-quantification methods, reaching a Pearson correlation coefficient of 0.86 with respect to ELBA.

Conclusions

TDr is an alternative approach to previously validated ones (SUVr and ELBA). It requires minimal image processing; it is independent on predefined regions of interest and does not require MR registration. Besides, it takes advantage on the availability of early scans which are becoming common practice while imposing a negligible added patient discomfort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14:535–62. https://doi.org/10.1016/j.jalz.2018.02.018.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–29.

    Article  PubMed  Google Scholar 

  3. Ikonomovic MD, Klunk WE, Abrahamson EE, Mathis CA, Price JC, Tsopelas ND, et al. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain. 2008;131:1630–45. https://doi.org/10.1093/brain/awn016.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Clark CM, Pontecorvo MJ, Beach TG, Bedell BJ, Coleman RE, Doraiswamy PM, et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study. Lancet Neurol. 2012;11:669–78.

    Article  CAS  PubMed  Google Scholar 

  5. Thal DR, Beach TG, Zanette M, Heurling K, Chakrabarty A, Ismail A, et al. [18 F]flutemetamol amyloid positron emission tomography in preclinical and symptomatic Alzheimer’s disease: Specific detection of advanced phases of amyloid-β pathology. Alzheimers Dement. 2015;11:975–85. https://doi.org/10.1016/j.jalz.2015.05.018.

    Article  PubMed  Google Scholar 

  6. Villemagne VL, Ong K, Mulligan RS, Holl G, Pejoska S, Jones G, et al. Amyloid imaging with (18)F-florbetaben in Alzheimer disease and other dementias. J Nucl Med. 2011;52:1210–7.

    Article  PubMed  Google Scholar 

  7. Wolz R, Schwarz AJ, Gray KR, Yu P, Hill DLG, Alzheimer’s Disease Neuroimaging Initiative. Enrichment of clinical trials in MCI due to AD using markers of amyloid and neurodegeneration. Neurology. 2016;87:1235–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kinahan PE, Fletcher JW. Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin Ultrasound CT MR. 2010;31:496–505.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Thurfjell L, Lilja J, Lundqvist R, Buckley C, Smith A, Vandenberghe R, et al. Automated quantification of 18F-flutemetamol PET activity for categorizing scans as negative or positive for brain amyloid: concordance with visual image reads. J Nucl Med. 2014;55:1623–8.

    Article  CAS  PubMed  Google Scholar 

  10. Mattsson N, Insel PS, Landau S, Jagust W, Donohue M, Shaw LM, et al. Diagnostic accuracy of CSF Ab42 and florbetapir PET for Alzheimer’s disease. Ann Clin Transl Neurol. 2014;1:534–43. https://doi.org/10.1002/acn3.81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jagust WJ, Landau SM, Koeppe RA, Reiman EM, Chen K, Mathis CA, et al. The Alzheimer’s disease neuroimaging initiative 2 PET core: 2015. Alzheimers Dement. 2015;11:757–71. https://doi.org/10.1016/j.jalz.2015.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Klunk WE, Koeppe RA, Price JC, Benzinger TL, Devous MD Sr, Jagust WJ, et al. The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimers Dement. 2015;11:1–15.e1–4.

    Article  PubMed  Google Scholar 

  13. Tryputsen V, DiBernardo A, Samtani M, Novak GP, Narayan VA, Raghavan N, et al. Optimizing regions-of-interest composites for capturing treatment effects on brain amyloid in clinical trials. J Alzheimers Dis. 2015;43:809–21.

    Article  CAS  PubMed  Google Scholar 

  14. Su Y, Blazey TM, Snyder AZ, Raichle ME, Marcus DS, Ances BM, et al. Partial volume correction in quantitative amyloid imaging. Neuroimage. 2015;107:55–64.

    Article  CAS  PubMed  Google Scholar 

  15. Schmidt ME, Chiao P, Klein G, Matthews D, Thurfjell L, Cole PE, et al. The influence of biological and technical factors on quantitative analysis of amyloid PET: points to consider and recommendations for controlling variability in longitudinal data. Alzheimers Dement. 2015;11:1050–68.

    Article  PubMed  Google Scholar 

  16. Chincarini A, Sensi F, Rei L, Bossert I, Morbelli S, Guerra UP, et al. Standardized uptake value ratio-independent evaluation of brain amyloidosis. J Alzheimers Dis. 2016;54:1437–57.

    Article  CAS  PubMed  Google Scholar 

  17. Cecchin D, Barthel H, Poggiali D, Cagnin A, Tiepolt S, Zucchetta P, et al. A new integrated dual time-point amyloid PET/MRI data analysis method. Eur J Nucl Med Mol Imaging. 2017;44:2060–72.

    Article  CAS  PubMed  Google Scholar 

  18. Landau SM, Thomas BA, Thurfjell L, Schmidt M, Margolin R, Mintun M, et al. Amyloid PET imaging in Alzheimer’s disease: a comparison of three radiotracers. Eur J Nucl Med Mol Imaging. 2014;41:1398–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Johnson KA, Minoshima S, Bohnen NI, Donohoe KJ, Foster NL, Herscovitch P, et al. Appropriate use criteria for amyloid PET: a report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association. J Nucl Med. 2013;54:476–90. https://doi.org/10.2967/jnumed.113.120618.

    Article  CAS  PubMed  Google Scholar 

  20. Wong DF, Rosenberg PB, Zhou Y, Kumar A, Raymont V, Ravert HT, et al. In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (flobetapir F 18). J Nucl Med. 2010;51:913–20. https://doi.org/10.2967/jnumed.109.069088.

    Article  CAS  PubMed  Google Scholar 

  21. Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab. 2005;25:1528–47.

    Article  CAS  PubMed  Google Scholar 

  22. Contractor KB, Kenny LM, Coombes CR, Turkheimer FE, Aboagye EO, Rosso L. Evaluation of limited blood sampling population input approaches for kinetic quantification of [18F]fluorothymidine PET data. EJNMMI Res. 2012;2:11. https://doi.org/10.1186/2191-219x-2-11.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Meyer PT, Hellwig S, Amtage F, Rottenburger C, Sahm U, Reuland P, et al. Dual-biomarker imaging of regional cerebral amyloid load and neuronal activity in dementia with PET and 11C-labeled Pittsburgh compound B. J Nucl Med. 2011;52:393–400.

    Article  PubMed  Google Scholar 

  24. van Osch MJP, Teeuwisse WM, van Walderveen MAA, Hendrikse J, Kies DA, van Buchem MA. Can arterial spin labeling detect white matter perfusion signal? Magn Reson Med. 2009;62:165–73.

    Article  PubMed  Google Scholar 

  25. Roberts DA, Detre JA, Bolinger L, Insko EK, Leigh JS. Quantitative magnetic resonance imaging of human brain perfusion at 1.5 T using steady-state inversion of arterial water. Proc Natl Acad Sci. 1994;91:33–7. https://doi.org/10.1073/pnas.91.1.33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Asllani I, Borogovac A, Brown TR. Regression algorithm correcting for partial volume effects in arterial spin labeling MRI. Magn Reson Med. 2008;60:1362–71.

    Article  PubMed  Google Scholar 

  27. Ye FQ, Berman KF, Ellmore T, Esposito G, van Horn JD, Yang Y, et al. H215O PET validation of steady-state arterial spin tagging cerebral blood flow measurements in humans. Magn Reson Med. 2000;44:450–6. https://doi.org/10.1002/1522-2594(200009)44:3<450::aid-mrm16>3.0.co;2-0.

    Article  CAS  PubMed  Google Scholar 

  28. Law I, Iida H, Holm S, Nour S, Rostrup E, Svarer C, et al. Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: II. Normal values and gray matter blood flow response to visual activation. J Cereb Blood Flow Metab. 2000;20:1252–63.

    Article  CAS  PubMed  Google Scholar 

  29. Momjian S, Owler BK, Czosnyka Z, Czosnyka M, Pena A, Pickard JD. Pattern of white matter regional cerebral blood flow and autoregulation in normal pressure hydrocephalus. Brain. 2004;127:965–72.

    Article  PubMed  Google Scholar 

  30. Owler BK, Momjian S, Czosnyka Z, Czosnyka M, Péna A, Harris NG, et al. Normal pressure hydrocephalus and cerebral blood flow: a PET study of baseline values. J Cereb Blood Flow Metab. 2004;24:17–23.

    Article  PubMed  Google Scholar 

  31. Leinonen V, Rinne JO, Wong DF, Wolk DA, Trojanowski JQ, Sherwin PF, et al. Diagnostic effectiveness of quantitative [18F]flutemetamol PET imaging for detection of fibrillar amyloid β using cortical biopsy histopathology as the standard of truth in subjects with idiopathic normal pressure hydrocephalus. Acta Neuropathol Commun. 2014;2. https://doi.org/10.1186/2051-5960-2-46.

  32. Landau SM, Breault C, Joshi AD, Pontecorvo M, Mathis CA, Jagust WJ, et al. Amyloid-β imaging with Pittsburgh compound B and florbetapir: comparing radiotracers and quantification methods. J Nucl Med. 2013;54:70–7. https://doi.org/10.2967/jnumed.112.109009.

    Article  CAS  PubMed  Google Scholar 

  33. Doraiswamy PM, Sperling RA, Coleman RE, Johnson KA, Reiman EM, Davis MD, et al. Amyloid-β assessed by florbetapir F 18 PET and 18-month cognitive decline: a multicenter study. Neurology. 2012;79:1636–44.

    Article  CAS  PubMed  Google Scholar 

  34. Chen K, Roontiva A, Thiyyagura P, Lee W, Liu X, Ayutyanont N, et al. Improved power for characterizing longitudinal amyloid- PET changes and evaluating amyloid-modifying treatments with a cerebral white matter reference region. J Nucl Med. 2015;56:560–6. https://doi.org/10.2967/jnumed.114.149732.

    Article  CAS  PubMed  Google Scholar 

  35. Landau SM, Fero A, Baker SL, Koeppe R, Mintun M, Chen K, et al. Measurement of longitudinal -amyloid change with 18F-florbetapir PET and standardized uptake value ratios. J Nucl Med. 2015;56:567–74. https://doi.org/10.2967/jnumed.114.148981.

    Article  CAS  PubMed  Google Scholar 

  36. Brendel M, Högenauer M, Delker A, Sauerbeck J, Bartenstein P, Seibyl J, et al. Improved longitudinal [(18)F]-AV45 amyloid PET by white matter reference and VOI-based partial volume effect correction. Neuroimage. 2015;108:450–9.

    Article  PubMed  Google Scholar 

  37. Fleisher AS, Joshi AD, Sundell KL, Chen Y-F, Kollack-Walker S, Lu M, et al. Use of white matter reference regions for detection of change in florbetapir positron emission tomography from completed phase 3 solanezumab trials. Alzheimers Dement. 2017;13:1117–24.

    Article  PubMed  Google Scholar 

  38. Su Y, Blazey TM, Owen CJ, Christensen JJ, Friedrichsen K, Joseph-Mathurin N, et al. Quantitative amyloid imaging in autosomal dominant Alzheimer’s disease: results from the DIAN study group. PLoS One. 2016;11:e0152082.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A. 2000;97:11050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sisodiya S, Free S, Fish D, Shorvon S. MRI-based surface area estimates in the normal adult human brain: evidence for structural organisation. J Anat. 1996;188(Pt 2):425–38.

    PubMed  PubMed Central  Google Scholar 

  41. Jones SE, Buchbinder BR, Aharon I. Three-dimensional mapping of cortical thickness using Laplace’s equation. Hum Brain Mapp. 2000;11:12–32. https://doi.org/10.1002/1097-0193(200009)11:1<12::aid-hbm20>3.0.co;2-k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hutton C, De Vita E, Ashburner J, Deichmann R, Turner R. Voxel-based cortical thickness measurements in MRI. NeuroImage. 2008;40:1701–10. https://doi.org/10.1016/j.neuroimage.2008.01.027.

    Article  PubMed  Google Scholar 

  43. Lerch JP, Pruessner JC, Zijdenbos A, Hampel H, Teipel SJ, Evans AC. Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cereb Cortex. 2005;15:995–1001.

    Article  PubMed  Google Scholar 

  44. Daerr S, Brendel M, Zach C, Mille E, Schilling D, Zacherl MJ, et al. Evaluation of early-phase [ 18 F]-florbetaben PET acquisition in clinical routine cases. NeuroImage: Clinical. 2017;14:77–86. https://doi.org/10.1016/j.nicl.2016.10.005.

    Article  Google Scholar 

  45. Ottoy J, Miedema M, De Puydt C, Verhaeghe J, Deleye S, Engelborghs S, et al. Early frame 18F-AV45 and 18F-FDG-PET as proxies of CBF: comparison to 15O-H2O PET data. Alzheimers Dement. 2017;13:P763–4. https://doi.org/10.1016/j.jalz.2017.06.1018.

    Article  Google Scholar 

  46. Rostomian AH, Madison C, Rabinovici GD, Jagust WJ. Early 11C-PIB frames and 18F-FDG PET measures are comparable: a study validated in a cohort of AD and FTLD patients. J Nucl Med. 2011. https://doi.org/10.2967/jnumed.110.082057.

  47. Chen YJ, Rosario BL, Mowrey W, Laymon CM, Lu X, Lopez OL, et al. Relative 11C-PiB delivery as a proxy of relative CBF: quantitative evaluation using single-session 15O-water and 11C-PiB PET. J Nucl Med. 2015;56:1199–205.

    Article  CAS  PubMed  Google Scholar 

  48. Chincarini A, Peira E, Morbelli S, Pardini M, Bauckneht M, Arbizu J, et al. Semi-quantification and grading of amyloid PET: a project of the European Alzheimer’s Disease Consortium (EADC). NeuroImage: Clinical. 2019;23:101846. https://doi.org/10.1016/j.nicl.2019.101846.

    Article  CAS  Google Scholar 

Download references

Funding

E.P. was supported by Airalzh Onlus—COOP Italia (grant no. 138812/Rep n° 2459). V.G. was supported by the Swiss National Science Foundation (grant no. 320030_169876) and by the Velux foundation (grant no. 1123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chincarini.

Ethics declarations

The scans were acquired in the clinical setting for diagnostic purposes. All subjects (or their legal representative, if demented) were informed that their scans would have been used for research purposes and gave their written consent. All procedures performed were in accordance with the ethical standards of each local institutional Ethics Committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

The supervising ethics committee for this study is the CER (Comitato Etico della Regione Liguria), based in Genoa, Italy. Ethics Committees approvals included the transfer of imaging data, all anonymized brain amyloid PET were collected from the centers in DICOM format.

Quality of images was checked by an experienced Nuclear Medicine Physician (S.M.).

Conflict of interest

In the past years, Dr. Nobili received fees from Eli-Lilly & Co for giving teaching course on visual reading of [18F]Florbetapir, and from Bayer Pharma for participation in an advisory board on [18F]Florbetaben.

Dr. Pardini receives research support from Novartis and Nutricia and received personal fees from Novartis, Merck, Roche. Dr. Pardini is partly supported by a Curiosity-driven grant from the University of Genoa.

All other authors disclose no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Technology.

Electronic supplementary material

ESM 1

(DOCX 1938 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chincarini, A., Peira, E., Corosu, M. et al. A kinetics-based approach to amyloid PET semi-quantification. Eur J Nucl Med Mol Imaging 47, 2175–2185 (2020). https://doi.org/10.1007/s00259-020-04689-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-020-04689-y

Keywords

Navigation