Skip to main content

Advertisement

Log in

[18F]GTP1 (Genentech Tau Probe 1), a radioligand for detecting neurofibrillary tangle tau pathology in Alzheimer’s disease

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Objective

Neurofibrillary tangles (NFTs), consisting of intracellular aggregates of the tau protein, are a pathological hallmark of Alzheimer’s disease (AD). Here we report the identification and initial characterization of Genentech Tau Probe 1 ([18F]GTP1), a small-molecule PET probe for imaging tau pathology in AD patients.

Methods

Autoradiography using human brain tissues from AD donors and protein binding panels were used to determine [18F]GTP1 binding characteristics. Stability was evaluated in vitro and in vivo in mice and rhesus monkey. In the clinic, whole-body imaging was performed to assess biodistribution and dosimetry. Dynamic [18F]GTP1 brain imaging and input function measurement were performed on two separate days in 5 β-amyloid plaque positive (Aβ+) AD and 5 β-amyloid plaque negative (Aβ-) cognitive normal (CN) participants. Tracer kinetic modeling was applied and reproducibility was evaluated. SUVR was calculated and compared to [18F]GTP1-specific binding parameters derived from the kinetic modeling. [18F]GTP1 performance in a larger cross-sectional group of 60 Aβ+ AD participants and ten (Aβ- or Aβ+) CN was evaluated with images acquired 60 to 90 min post tracer administration.

Results

[18F]GTP1 exhibited high affinity and selectivity for tau pathology with no measurable binding to β-amyloid plaques or MAO-B in AD tissues, or binding to other tested proteins at an affinity predicted to impede image data interpretation. In human, [18F]GTP1 exhibited favorable dosimetry and brain kinetics, and no evidence of defluorination. [18F]GTP1-specific binding was observed in cortical regions of the brain predicted to contain tau pathology in AD and exhibited low (< 4%) test-retest variability. SUVR measured in the 60 to 90-min interval post injection correlated with tracer-specific binding (slope = 1.36, r2 = 0.98). Furthermore, in a cross-sectional population, the degree of [18F]GTP1-specific binding increased with AD severity and could differentiate diagnostic cohorts.

Conclusions

[18F]GTP1 is a promising PET probe for the study of tau pathology in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jack CR Jr, Wiste HJ, Vemuri P, Weigand SD, Senjem ML, Zeng G, et al. Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer's disease. Brain. 2010;133(11):3336–48. https://doi.org/10.1093/brain/awq277.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med. 2012;367(9):795–804. https://doi.org/10.1056/NEJMoa1202753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chien DT, Bahri S, Szardenings AK, Walsh JC, Mu F, Su MY, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. Journal of Alzheimer's disease: JAD. 2013;34(2):457–68. https://doi.org/10.3233/JAD-122059.

    Article  CAS  PubMed  Google Scholar 

  4. Chien DT, Szardenings AK, Bahri S, Walsh JC, Mu F, Xia C, et al. Early clinical PET imaging results with the novel PHF-tau radioligand [F18]-T808. Journal of Alzheimer's disease: JAD. 2014;38(1):171–84. https://doi.org/10.3233/JAD-130098.

    Article  PubMed  Google Scholar 

  5. Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79(6):1094–108. https://doi.org/10.1016/j.neuron.2013.07.037.

    Article  CAS  PubMed  Google Scholar 

  6. Kimura Y, Endo H, Ichise M, Shimada H, Seki C, Ikoma Y, et al. A new method to quantify tau pathologies with (11)C-PBB3 PET using reference tissue voxels extracted from brain cortical gray matter. EJNMMI Res. 2016;6(1):24. https://doi.org/10.1186/s13550-016-0182-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kimura Y, Ichise M, Ito H, Shimada H, Ikoma Y, Seki C, et al. PET quantification of tau pathology in human brain with 11C-PBB3. J Nucl Med. 2015;56(9):1359–65. https://doi.org/10.2967/jnumed.115.160127.

    Article  CAS  PubMed  Google Scholar 

  8. Declercq L, Rombouts F, Koole M, Fierens K, Marien J, Langlois X, et al. Preclinical evaluation of (18)F-JNJ64349311, a novel PET tracer for tau imaging. J Nucl Med. 2017;58(6):975–81. https://doi.org/10.2967/jnumed.116.185199.

    Article  CAS  PubMed  Google Scholar 

  9. Hostetler ED, Walji AM, Zeng Z, Miller P, Bennacef I, Salinas C, et al. Preclinical characterization of 18F-MK-6240, a promising PET tracer for in vivo quantification of human neurofibrillary tangles. J Nucl Med. 2016;57(10):1599–606. https://doi.org/10.2967/jnumed.115.171678.

    Article  CAS  PubMed  Google Scholar 

  10. Pascoal TA, Shin M, Kang MS, Chamoun M, Chartrand D, Mathotaarachchi S, et al. In vivo quantification of neurofibrillary tangles with [18F]MK-6240. Alzheimers Res Ther. 2018;10(1):74. https://doi.org/10.1186/s13195-018-0402-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wong DF, Comley R, Kuwabara H, Rosenberg PB, Resnick SM, Ostrowitzki S, et al. First in-human PET study of 3 novel tau radiopharmaceuticals: [(11)C]RO6924963, [(11)C]RO6931643, and [(18)F]RO6958948. J Nucl Med. 2018. https://doi.org/10.2967/jnumed.118.209916.

  12. Gant TG. Using deuterium in drug discovery: leaving the label in the drug. J Med Chem. 2013. https://doi.org/10.1021/jm4007998.

  13. Jahan M, Eriksson O, Johnstrom P, Korsgren O, Sundin A, Johansson L, et al. Decreased defluorination using the novel beta-cell imaging agent [18F]FE-DTBZ-d4 in pigs examined by PET. EJNMMI Res. 2011;1(1):33.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schou M, Halldin C, Sovago J, Pike VW, Hall H, Gulyas B, et al. PET evaluation of novel radiofluorinated reboxetine analogs as norepinephrine transporter probes in the monkey brain. Synapse. 2004;53(2):57–67. https://doi.org/10.1002/syn.20031.

    Article  CAS  PubMed  Google Scholar 

  15. Marik J, Tinianow JN, Ogasawara A, Liu N, Williams SP, Lyssikatos JP, et al. [18F]GTP1 - A tau-specific tracer for imaging taupathology in AD. 10th Human Amyloid Imaging; January 13–15, 2016; Miami, FL 2016. p. 49 (PE32).

  16. Marik J, Lyssikatos JP, Williams SP, inventors; US Patent No. 10,076,581. Deuterated compounds and uses thereof. 2018 Sep. 18.

  17. Choi SR, Golding G, Zhuang Z, Zhang W, Lim N, Hefti F, et al. Preclinical properties of 18F-AV-45: a PET agent for Abeta plaques in the brain. J Nucl Med. 2009;50(11):1887–94. https://doi.org/10.2967/jnumed.109.065284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27(9):1533–9. https://doi.org/10.1038/sj.jcbfm.9600493.

    Article  CAS  Google Scholar 

  19. Logan J. Graphical analysis of PET data applied to reversible and irreversible tracers. Nucl Med Biol. 2000;27(7):661–70.

    Article  CAS  PubMed  Google Scholar 

  20. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.

    Article  CAS  PubMed  Google Scholar 

  21. Marquie M, Normandin MD, Vanderburg CR, Costantino IM, Bien EA, Rycyna LG, et al. Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol. 2015;78(5):787–800. https://doi.org/10.1002/ana.24517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. NeuroImage. 1996;4(3 Pt 1):153–8. https://doi.org/10.1006/nimg.1996.0066.

    Article  CAS  PubMed  Google Scholar 

  23. Hedges LV, Shymansky JA, Woodworth G. A practical guide to modern methods of meta-analysis. Washington, DC: National Science Teachers Association; 1989.

    Google Scholar 

  24. Scholl M, Lockhart SN, Schonhaut DR, O'Neil JP, Janabi M, Ossenkoppele R, et al. PET imaging of tau deposition in the aging human brain. Neuron. 2016;89(5):971–82. https://doi.org/10.1016/j.neuron.2016.01.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jack CR Jr, Wiste HJ, Weigand SD, Therneau TM, Lowe VJ, Knopman DS, et al. Defining imaging biomarker cut points for brain aging and Alzheimer's disease. Alzheimers Dement. 2017;13(3):205–16. https://doi.org/10.1016/j.jalz.2016.08.005.

    Article  PubMed  Google Scholar 

  26. Landau SM, Breault C, Joshi AD, Pontecorvo M, Mathis CA, Jagust WJ, et al. Amyloid-beta imaging with Pittsburgh compound B and florbetapir: comparing radiotracers and quantification methods. J Nucl Med. 2013;54(1):70–7. https://doi.org/10.2967/jnumed.112.109009.

    Article  CAS  PubMed  Google Scholar 

  27. Ng KP, Pascoal TA, Mathotaarachchi S, Therriault J, Kang MS, Shin M, et al. Monoamine oxidase B inhibitor, selegiline, reduces (18)F-THK5351 uptake in the human brain. Alzheimers Res Ther. 2017;9(1):25. https://doi.org/10.1186/s13195-017-0253-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu Y, Carson RE. Noise reduction in the simplified reference tissue model for neuroreceptor functional imaging. J Cereb Blood Flow Metab. 2002;22(12):1440–52. https://doi.org/10.1097/01.WCB.0000033967.83623.34.

    Article  PubMed  Google Scholar 

  29. Teng E, Ward M, Manser PT, Sanabria-Bohorquez S, Ray RD, Wildsmith KR, et al. Cross-sectional associations between [18F]GTP1 tau PET and cognition in Alzheimer's disease. Neurobiol Aging. 2019. Accepted.

  30. Leuzy A, Chiotis K, Lemoine L, Gillberg PG, Almkvist O, Rodriguez-Vieitez E, et al. Tau PET imaging in neurodegenerative tauopathies-still a challenge. Mol Psychiatry. 2019. https://doi.org/10.1038/s41380-018-0342-8.

  31. Gobbi LC, Knust H, Korner M, Honer M, Czech C, Belli S, et al. Identification of three novel radiotracers for imaging aggregated tau in Alzheimer's disease with positron emission tomography. J Med Chem. 2017;60(17):7350–70. https://doi.org/10.1021/acs.jmedchem.7b00632.

    Article  CAS  PubMed  Google Scholar 

  32. Barret O, Alagille D, Sanabria S, Comley RA, Weimer RM, Borroni E, et al. Kinetic modeling of the tau PET tracer (18)F-AV-1451 in human healthy volunteers and Alzheimer disease subjects. J Nucl Med. 2017;58(7):1124–31. https://doi.org/10.2967/jnumed.116.182881.

    Article  CAS  PubMed  Google Scholar 

  33. Shcherbinin S, Schwarz AJ, Joshi A, Navitsky M, Flitter M, Shankle WR, et al. Kinetics of the tau PET tracer 18F-AV-1451 (T807) in subjects with normal cognitive function, mild cognitive impairment, and Alzheimer disease. J Nucl Med. 2016;57(10):1535–42. https://doi.org/10.2967/jnumed.115.170027.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Alex de Crespigny, Flavia Brunstein, Edward Teng, Kristin Wildsmith, Corinne Foo-Atkins, Reina Fuji, Gautham Rao, Michael Keeley, and Beth Blankemeier for their support and contribution to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robby M. Weimer.

Ethics declarations

Research involving human participants and/or animals.

Informed consent.

Conflict of interest

All authors are paid employees of either Genentech Inc., or Invicro LLC and all work was funded by Genentech Inc.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Translational Research

Sandra Sanabria Bohórquez and Jan Marik are co-first authors.

Electronic supplementary material

ESM 1

(DOC 2363 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanabria Bohórquez, S., Marik, J., Ogasawara, A. et al. [18F]GTP1 (Genentech Tau Probe 1), a radioligand for detecting neurofibrillary tangle tau pathology in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 46, 2077–2089 (2019). https://doi.org/10.1007/s00259-019-04399-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-019-04399-0

Keywords

Navigation