Skip to main content

Advertisement

Log in

[18F]Fluciclatide in the in vivo evaluation of human melanoma and renal tumors expressing αvβ3 and αvβ5 integrins

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

[18F]Fluciclatide is an integrin-targeted PET radiopharmaceutical. αvβ3 and αvβ5 are upregulated in tumor angiogenesis as well as on some tumor cell surfaces. Our aim was to use [18F]fluciclatide (formerly known as [18F]AH111585) for PET imaging of angiogenesis in melanoma and renal tumors and compare with tumor integrin expression.

Methods

Eighteen evaluable patients with solid tumors ≥2.0 cm underwent [18F]fluciclatide PET/CT. All patients underwent surgery and tumor tissue samples were obtained. Immunohistochemical (IHC) staining with mouse monoclonal antibodies and diaminobenzidine (DAB) was applied to snap-frozen tumor specimens, and additional IHC was done on formalin-fixed paraffin-embedded samples. DAB optical density (OD) data from digitized whole-tissue sections were compared with PET SUV80% max, and Patlak influx rate constant (K i) data, tumor by tumor.

Results

Tumors from all 18 patients demonstrated measurable [18F]fluciclatide uptake. At the final dynamic time-point (55 min after injection), renal malignancies (in 11 patients) demonstrated an average SUV80% max of 6.4 ± 2.0 (range 3.8 – 10.0), while the average SUV80% max for metastatic melanoma lesions (in 6 patients) was 3.0 ± 2.0 (range 0.7 – 6.5). There was a statistically significant difference in [18F]fluciclatide uptake between chromophobe and nonchromophobe renal cell carcinoma (RCCs, with SUV80% max of 8.2 ± 1.8 and 5.4 ± 1.4 (P = 0.020) and tumor-to-normal kidney (T/N) ratios of 1.5 ± 0.4 and 0.9 ± 0.2, respectively (P = 0.029). The highest Pearson's correlation coefficients were obtained when comparing Patlak K i and αvβ5 OD when segregating the patient population between melanoma and RCC (r = 0.83 for K i vs. melanoma and r = 0.91 for K i vs. RCC). SUV80% max showed a moderate correlation with αvβ5 and αvβ3 OD.

Conclusion

[18F]Fluciclatide PET imaging was well tolerated and demonstrated favorable characteristics for imaging αvβ3 and αvβ5 expression in melanoma and RCC. Higher uptake was observed in chromophobe than in nonchromophobe RCC. [18F]Fluciclatide may be a useful radiotracer to improve knowledge of integrin expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Folkman J. Angiogenesis. Annu Rev Med. 2006;57:1–18. doi:10.1146/annurev.med.57.121304.131306.

    Article  CAS  PubMed  Google Scholar 

  2. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10(1):9–22.

    Article  CAS  PubMed  Google Scholar 

  3. Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science. 1987;238(4826):491–7.

    Article  CAS  PubMed  Google Scholar 

  4. Haubner R, Wester HJ. Radiolabeled tracers for imaging of tumor angiogenesis and evaluation of anti-angiogenic therapies. Curr Pharm Des. 2004;10(13):1439–55.

    Article  CAS  PubMed  Google Scholar 

  5. Gaertner FC, Kessler H, Wester HJ, Schwaiger M, Beer AJ. Radiolabelled RGD peptides for imaging and therapy. Eur J Nucl Med Mol Imaging. 2012;39 Suppl 1:S126–38. doi:10.1007/s00259-011-2028-1.

    Article  PubMed  Google Scholar 

  6. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. Lyon: International Agency for Research on Cancer; 2013. Available from: http://globocan.iarc.fr. Accessed 29 May 2014.

  7. Kim KB, Prieto V, Joseph RW, Diwan AH, Gallick GE, Papadopoulos NE, et al. A randomized phase II study of cilengitide (EMD 121974) in patients with metastatic melanoma. Melanoma Res. 2012;22(4):294–301. doi:10.1097/CMR.0b013e32835312e4.

    Article  CAS  PubMed  Google Scholar 

  8. O'Day S, Pavlick A, Loquai C, Lawson D, Gutzmer R, Richards J, et al. A randomised, phase II study of intetumumab, an anti-alphav-integrin mAb, alone and with dacarbazine in stage IV melanoma. Br J Cancer. 2011;105(3):346–52. doi:10.1038/bjc.2011.183.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Bex A, Fournier L, Lassau N, Mulders P, Nathan P, Oyen WJ, et al. Assessing the response to targeted therapies in renal cell carcinoma: technical insights and practical considerations. Eur Urol. 2014;65(4):766–77. doi:10.1016/j.eururo.2013.11.031.

    Article  PubMed  Google Scholar 

  10. Kenny LM, Coombes RC, Oulie I, Contractor KB, Miller M, Spinks TJ, et al. Phase I trial of the positron-emitting Arg-Gly-Asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients. J Nucl Med. 2008;49(6):879–86. doi:10.2967/jnumed.107.049452.

    Article  PubMed  Google Scholar 

  11. Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med Off Publi Soc Nucl Med. 2007;48(3):471–80.

    Google Scholar 

  12. Browne J, de Pierro AB. A row-action alternative to the EM algorithm for maximizing likelihood in emission tomography. IEEE Trans Med Imaging. 1996;15(5):687–99. doi:10.1109/42.538946.

    Article  CAS  PubMed  Google Scholar 

  13. Glaser M, Morrison M, Solbakken M, Arukwe J, Karlsen H, Wiggen U, et al. Radiosynthesis and biodistribution of cyclic RGD peptides conjugated with novel [18F]fluorinated aldehyde-containing prosthetic groups. Bioconjug Chem. 2008;19(4):951–7. doi:10.1021/bc700472w.

    Article  CAS  PubMed  Google Scholar 

  14. McParland BJ, Miller MP, Spinks TJ, Kenny LM, Osman S, Khela MK, et al. The biodistribution and radiation dosimetry of the Arg-Gly-Asp peptide 18F-AH111585 in healthy volunteers. J Nucl Med. 2008;49(10):1664–7. doi:10.2967/jnumed.108.052126.

    Article  PubMed  Google Scholar 

  15. Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab. 1985;5(4):584–90.

    Article  CAS  PubMed  Google Scholar 

  16. Ringheim AM, Miller MP, Owenius R. 18F-fluciclatide (RGD peptide) PET in metastatic breast cancer: impact of labeled metabolites on Patlak analysis and qualification of the use of image-derived blood input. Eur J Nucl Med Mol Imaging. 2012;39(2):498–611. doi:10.1007/s00259-012-2225-6.

    Google Scholar 

  17. Bordeaux J, Welsh A, Agarwal S, Killiam E, Baquero M, Hanna J, et al. Antibody validation. Biotechniques. 2010;48(3):197–209. doi:10.2144/000113382.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Tomasi G, Kenny L, Mauri F, Turkheimer F, Aboagye EO. Quantification of receptor-ligand binding with [18F]fluciclatide in metastatic breast cancer patients. Eur J Nucl Med Mol Imaging. 2011;38(12):2186–97. doi:10.1007/s00259-011-1907-9.

    Article  CAS  PubMed  Google Scholar 

  19. Yusenko MV. Molecular pathology of renal oncocytoma: a review. Int J Urol. 2010;17(7):602–12. doi:10.1111/j.1442-2042.2010.02574.x.

    Article  PubMed  Google Scholar 

  20. Schnell O, Krebs B, Carlsen J, Miederer I, Goetz C, Goldbrunner RH, et al. Imaging of integrin alpha(v)beta(3) expression in patients with malignant glioma by [18F] Galacto-RGD positron emission tomography. Neuro Oncol. 2009;11(6):861–70. doi:10.1215/15228517-2009-024.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Pasqualini R, Koivunen E, Ruoslahti E. Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol. 1997;15(6):542–6. doi:10.1038/nbt0697-542.

    Article  CAS  PubMed  Google Scholar 

  22. Haubner R, Wester HJ, Weber WA, Mang C, Ziegler SI, Goodman SL, et al. Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res. 2001;61(5):1781–5.

    CAS  PubMed  Google Scholar 

  23. Zhang X, Xiong Z, Wu Y, Cai W, Tseng JR, Gambhir SS, et al. Quantitative PET imaging of tumor integrin alphavbeta3 expression with 18F-FRGD2. J Nucl Med. 2006;47(1):113–21.

    CAS  PubMed  Google Scholar 

  24. Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, et al. Noninvasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med. 2005;2(3):e70. doi:10.1371/journal.pmed.0020070.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, et al. Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin alpha(v)beta3 expression in man. Clin Cancer Res. 2006;12(13):3942–9. doi:10.1158/1078-0432.ccr-06-0266.

    Article  CAS  PubMed  Google Scholar 

  26. Beer AJ, Niemeyer M, Carlsen J, Sarbia M, Nahrig J, Watzlowik P, et al. Patterns of alphavbeta3 expression in primary and metastatic human breast cancer as shown by 18F-Galacto-RGD PET. J Nucl Med. 2008;49(2):255–9. doi:10.2967/jnumed.107.045526.

    Article  PubMed  Google Scholar 

  27. Beer AJ, Grosu AL, Carlsen J, Kolk A, Sarbia M, Stangier I, et al. [18F]galacto-RGD positron emission tomography for imaging of alphavbeta3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res. 2007;13(22 Pt 1):6610–6. doi:10.1158/1078-0432.ccr-07-0528.

    Article  CAS  PubMed  Google Scholar 

  28. Spector NL, Xia W, Burris 3rd H, Hurwitz H, Dees EC, Dowlati A, et al. Study of the biologic effects of lapatinib, a reversible inhibitor of ErbB1 and ErbB2 tyrosine kinases, on tumor growth and survival pathways in patients with advanced malignancies. J Clin Oncol. 2005;23(11):2502–12. doi:10.1200/jco.2005.12.157.

    Article  CAS  PubMed  Google Scholar 

  29. Seftor RE, Seftor EA, Hendrix MJ. Molecular role(s) for integrins in human melanoma invasion. Cancer Metastasis Rev. 1999;18(3):359–75.

    Article  CAS  PubMed  Google Scholar 

  30. McGary EC, Lev DC, Bar-Eli M. Cellular adhesion pathways and metastatic potential of human melanoma. Cancer Biol Ther. 2002;1(5):459–65.

    Article  PubMed  Google Scholar 

  31. Wechsel HW, Petri E, Feil G, Nelde HJ, Bichler KH, Loesr W. Renal cell carcinoma: immunohistological investigation of expression of the integrin alpha v beta 3. Anticancer Res. 1999;19(2C):1529–32.

    CAS  PubMed  Google Scholar 

  32. Cai J, Han S, Qing R, Liao D, Law B, Boulton ME. In pursuit of new anti-angiogenic therapies for cancer treatment. Front Biosci (Landmark Ed). 2011;16:803–14.

    Article  CAS  Google Scholar 

  33. Battle MR, Goggi JL, Allen L, Barnett J, Morrison MS. Monitoring tumor response to antiangiogenic sunitinib therapy with 18F-fluciclatide, an 18F-labeled alphaVbeta3-integrin and alphaV beta5-integrin imaging agent. J Nucl Med. 2011;52(3):424–30. doi:10.2967/jnumed.110.077479.

    Article  CAS  PubMed  Google Scholar 

  34. Morrison MS, Ricketts SA, Barnett J, Cuthbertson A, Tessier J, Wedge SR. Use of a novel Arg-Gly-Asp radioligand, 18F-AH111585, to determine changes in tumor vascularity after antitumor therapy. J Nucl Med. 2009;50(1):116–22. doi:10.2967/jnumed.108.056077.

    Article  CAS  PubMed  Google Scholar 

  35. Sun X, Yan Y, Liu S, Cao Q, Yang M, Neamati N, et al. 18F-FPPRGD2 and 18F-FDG PET of response to Abraxane therapy. J Nucl Med. 2011;52(1):140–6. doi:10.2967/jnumed.110.080606.

    Article  PubMed  Google Scholar 

  36. Jin ZH, Furukawa T, Claron M, Boturyn D, Coll JL, Fukumura T, et al. Positron emission tomography imaging of tumor angiogenesis and monitoring of antiangiogenic efficacy using the novel tetrameric peptide probe 64Cu-cyclam-RAFT-c(-RGDfK-)4. Angiogenesis. 2012;15(4):569–80. doi:10.1007/s10456-012-9281-1.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Adrian Smith, Derek Grant, Brian Higley and Ian Wilson from GE Healthcare, and Tanya Ledezma and Karen Yamamoto for support. We also thank Earl Henry for consultancy with the statistical analyses. This trial was sponsored by GE Healthcare.

Disclosures

The authors Rikard Owenius, Sven Macholl, Matthew P. Miller, and Ed J. Somer are affiliated with GE Healthcare. The remaining authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liza Lindenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mena, E., Owenius, R., Turkbey, B. et al. [18F]Fluciclatide in the in vivo evaluation of human melanoma and renal tumors expressing αvβ3 and αvβ5 integrins. Eur J Nucl Med Mol Imaging 41, 1879–1888 (2014). https://doi.org/10.1007/s00259-014-2791-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-014-2791-x

Keywords

Navigation