Skip to main content
Log in

3D isotropic MRI of ankle: review of literature with comparison to 2D MRI

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

The ankle joint has complex anatomy with different tissue structures and is commonly involved in traumatic injuries. Magnetic resonance imaging (MRI) is the primary imaging modality used to assess the soft tissue structures around the ankle joint including the ligaments, tendons, and articular cartilage. Two-dimensional (2D) fast spin echo/turbo spin echo (FSE/TSE) sequences are routinely used for ankle joint imaging. While the 2D sequences provide a good signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) with high spatial resolution, there are some limitations to their use owing to the thick slices, interslice gaps leading to partial volume effects, limited fluid contrast, and the need to acquire separate images in different orthogonal planes. The 3D MR imaging can overcome these limitations and recent advances have led to technical improvements that enable its widespread clinical use in acceptable time periods. The volume imaging renders the advantage of reconstructing into thin continuous slices with isotropic voxels enabling multiplanar reconstructions that helps in visualizing complex anatomy of the structure of interest throughout their course with improved sharpness, definition of anatomic variants, and fluid conspicuity of lesions and injuries. Recent advances have also reduced the acquisition time of the 3D datasets making it more efficient than 2D sequences. This article reviews the recent technical developments in the domain 3D MRI, compares imaging with 3D versus 2D sequences, and demonstrates the use-case scenarios with interesting cases, and benefits of 3D MRI in evaluating various ankle joint components and their lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Doherty C, Delahunt E, Caulfield B, Hertel J, Ryan J, Bleakley C. The incidence and prevalence of ankle sprain injury: a systematic review and meta-analysis of prospective epidemiological studies. Sports Med (Auckland, NZ). 2014;44(1):123–40.

    Article  Google Scholar 

  2. Sharma GK, Dhillon MS, Dhatt SS. The influence of foot and ankle injury patterns and treatment delays on outcomes in a tertiary hospital; a one-year prospective observation. Foot (Edinburgh, Scotland). 2016;26:48–52.

    PubMed  Google Scholar 

  3. Leffler S, Disler DG. MR imaging of tendon, ligament, and osseous abnormalities of the ankle and hindfoot. Radiol Clin North Am. 2002;40(5):1147–70.

    Article  PubMed  Google Scholar 

  4. Stevens KJ, Busse RF, Han E, Brau AC, Beatty PJ, Beaulieu CF, et al. Ankle: isotropic MR imaging with 3D-FSE-cube—initial experience in healthy volunteers. Radiology. 2008;249(3):1026–33.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Taneja AK, Simeone FJ, Chang CY, Kumar V, Daley S, Bredella MA, et al. Peroneal tendon abnormalities in subjects with an enlarged peroneal tubercle. Skeletal Radiol. 2013;42(12):1703–9.

    Article  PubMed  Google Scholar 

  6. Kijowski R, Gold GE. Routine 3D magnetic resonance imaging of joints. J Magn Reson Imaging. 2011;33(4):758–71.

    Article  PubMed  Google Scholar 

  7. Fritz B, Fritz J. 3D MRI of the ankle: a concise state-of-the-art review. Semin Musculoskelet Radiol. 2021;25(3):514–26.

    Article  PubMed  Google Scholar 

  8. Notohamiprodjo M, Kuschel B, Horng A, Paul D, Baer P, Li G, et al. 3D-MRI of the ankle with optimized 3D-SPACE. Invest Radiol. 2012;47(4):231–9.

    Article  PubMed  Google Scholar 

  9. Bae WC, Ruangchaijatuporn T, Chung CB. New techniques in MR imaging of the ankle and foot. Magn Reson Imaging Clin. 2017;25(1):211–25.

    Article  Google Scholar 

  10. Lichy MP, Wietek BM, Mugler JP III, Horger W, Menzel MI, Anastasiadis A, et al. Magnetic resonance imaging of the body trunk using a single-slab, 3-dimensional, T2-weighted turbo-spin-echo sequence with high sampling efficiency (SPACE) for high spatial resolution imaging: initial clinical experiences. Invest Radiol. 2005;40(12):754–60.

    Article  PubMed  Google Scholar 

  11. Mugler JP III, Bao S, Mulkern RV, Guttmann CR, Robertson RL, Jolesz FA, et al. Optimized single-slab three-dimensional spin-echo MR imaging of the brain. Radiology. 2000;216(3):891–9.

    Article  PubMed  Google Scholar 

  12. Mengiardi B, Pfirrmann CW, Schöttle PB, Bode B, Hodler J, Vienne P, et al. Magic angle effect in MR imaging of ankle tendons: influence of foot positioning on prevalence and site in asymptomatic subjects and cadaveric tendons. Eur Radiol. 2006;16:2197–206.

    Article  PubMed  Google Scholar 

  13. Yi J, Cha JG, Lee YK, Lee BR, Jeon CH. MRI of the anterior talofibular ligament, talar cartilage and os subfibulare: comparison of isotropic resolution 3D and conventional 2D T2-weighted fast spin-echo sequences at 3.0 T. Skeletal Radiol. 2016;45:899–908.

    Article  PubMed  Google Scholar 

  14. Fritz B, de Cesar NC, Fritz J. Multiaxial 3D MRI of the ankle: advanced high-resolution visualization of ligaments, tendons, and articular cartilage. Foot Ankle Clin. 2023;28(3):529–50.

    Article  PubMed  Google Scholar 

  15. Busse R, Brau A, Beatty P, Brittain J, Sun L, Hariharan H, et al. Design of refocusing flip angle modulation for volumetric 3D-FSE imaging of brain, spine, knee, kidney and uterus. Signal. 2007;900:80.

    Google Scholar 

  16. Wang Z, Fernández-Seara MA. 2D partially parallel imaging with k-space surrounding neighbors-based data reconstruction. Magn Reson Med. 2006;56(6):1389–96. https://doi.org/10.1002/mrm.21078.

  17. Thakur U, Gulati V, Shah J, Tietze D, Chhabra A. Anterior cruciate ligament reconstruction related complications: 2D and 3D high-resolution magnetic resonance imaging evaluation. Skeletal Radiol. 2022;51(7):1347–64.

    Article  PubMed  Google Scholar 

  18. Kalia V, Fritz B, Johnson R, Gilson WD, Raithel E, Fritz J. CAIPIRINHA accelerated SPACE enables 10-min isotropic 3D TSE MRI of the ankle for optimized visualization of curved and oblique ligaments and tendons. Eur Radiol. 2017;27:3652–61.

    Article  PubMed  Google Scholar 

  19. Fritz B, Bensler S, Thawait GK, Raithel E, Stern SE, Fritz J. CAIPIRINHA-accelerated 10-min 3D TSE MRI of the ankle for the diagnosis of painful ankle conditions: performance evaluation in 70 patients. Eur Radiol. 2019;29:609–19.

    Article  PubMed  Google Scholar 

  20. Fritz J, Fritz B, Thawait GG, Meyer H, Gilson WD, Raithel E. Three-dimensional CAIPIRINHA SPACE TSE for 5-minute high-resolution MRI of the knee. Invest Radiol. 2016;51(10):609–17.

    Article  PubMed  Google Scholar 

  21. Fritz J, Ahlawat S, Fritz B, Thawait GK, Stern SE, Raithel E, et al. 10-Min 3D turbo spin echo MRI of the knee in children: arthroscopy-validated accuracy for the diagnosis of internal derangement. J Magn Reson Imaging. 2019;49(7):e139–51.

    Article  PubMed  Google Scholar 

  22. Gribble PA, Bleakley CM, Caulfield BM, Docherty CL, Fourchet F, Fong DT-P, et al. 2016 consensus statement of the International Ankle Consortium: prevalence, impact and long-term consequences of lateral ankle sprains. Br J Sports Med. 2016;50(24):1493–5.

    Article  PubMed  Google Scholar 

  23. Miranda FC, Kihara Filho EN. Acute ankle injuries: association between sprain severity and ancillary findings. Einstein. 2023;21:eAO0162.

    Article  PubMed  PubMed Central  Google Scholar 

  24. He L, Xu Y, Duan D, Ouyang L. The anterior talofibular ligament: a thin-slice three-dimensional magnetic resonance imaging study. Foot Ankle Surg. 2022;28(8):1202–9.

    Article  PubMed  Google Scholar 

  25. e Castro AD, Godoy-Santos AL, Taneja AK. Advanced imaging in the chronic lateral ankle instability: an algorithmic approach. Foot Ankle Clin. 2023;28(2):265–82.

    Article  Google Scholar 

  26. Hong CC, Lee JC, Tsuchida A, Katakura M, Jones M, Mitchell AW, et al. Individual fascicles of the ankle lateral ligaments and the lateral fibulotalocalcaneal ligament complex can be identified on 3D volumetric MRI. Knee Surg Sports Traumatol Arthrosc. 2023;31(6):2192–8.

    Article  PubMed  Google Scholar 

  27. Park H, Lee S, Park N, Rho M, Chung E, Park J, et al. Three-dimensional isotropic T2-weighted fast spin-echo (VISTA) ankle MRI versus two-dimensional fast spin-echo T2-weighted sequences for the evaluation of anterior talofibular ligament injury. Clin Radiol. 2016;71(4):349–55.

    Article  CAS  PubMed  Google Scholar 

  28. Xu Y, He L, Han Y, Duan D, Ouyang L. Evaluation of 3-dimensional magnetic resonance imaging (3D MRI) in diagnosing anterior talofibular ligament injury. Med Sci Monit: Int Med J Exp Clin Res. 2021;27:e927920–1.

    Article  Google Scholar 

  29. Choo HJ, Lee SJ, Kim DW, Jeong HW, Gwak H. Multibanded anterior talofibular ligaments in normal ankles and sprained ankles using 3D isotropic proton density–weighted fast spin-echo MRI sequence. Am J Roentgenol. 2014;202(1):W87–94.

    Article  Google Scholar 

  30. Akatsuka Y, Teramoto A, Takashima H, Watanabe K, Yamashita T. Morphological evaluation of the calcaneofibular ligament in different ankle positions using a three-dimensional MRI sequence. Surg Radiol Anat. 2019;41:307–11.

    Article  PubMed  Google Scholar 

  31. Mengiardi B, Pinto C, Zanetti M. Medial collateral ligament complex of the ankle: MR imaging anatomy and findings in medial instability. Semin Musculoskelet Radiol. 2016;20(1):91–103.

    Article  PubMed  Google Scholar 

  32. Omar H, Saini V, Wadhwa V, Liu G, Chhabra A. Spring ligament complex: illustrated normal anatomy and spectrum of pathologies on 3T MR imaging. Eur J Radiol. 2016;85(11):2133–43.

    Article  PubMed  Google Scholar 

  33. Hermans JJ, Ginai AZ, Wentink N, Hop WC, Beumer A. The additional value of an oblique image plane for MRI of the anterior and posterior distal tibiofibular syndesmosis. Skeletal Radiol. 2011;40:75–83.

    Article  PubMed  Google Scholar 

  34. Kim M, Choi YS, Jeong MS, Park M, Chun TJ, Kim JS, et al. Comprehensive assessment of ankle syndesmosis injury using 3D isotropic turbo spin-echo sequences: diagnostic performance compared with that of conventional and oblique 3-T MRI. Am J Roentgenol. 2017;208(4):827–33.

    Article  Google Scholar 

  35. Jung H-G, Moon SG, Yoon DY, Jang H, Kang JH. Feasibility of MRI for the evaluation of interosseous ligament vertical segment via subtalar arthroscopy correlation: comparison of 2D and 3D MR images. BMC Musculoskelet Disord. 2021;22(1):1–11.

    Article  CAS  Google Scholar 

  36. Ulbrich EJ, Zubler V, Sutter R, Espinosa N, Pfirrmann CW, Zanetti M. Ligaments of the Lisfranc joint in MRI: 3D-SPACE (sampling perfection with application optimized contrasts using different flip-angle evolution) sequence compared to three orthogonal proton-density fat-saturated (PD fs) sequences. Skeletal Radiol. 2013;42:399–409.

    Article  PubMed  Google Scholar 

  37. Kim TH, Moon SG, Jung H-G, Kim NR. Subtalar instability: imaging features of subtalar ligaments on 3D isotropic ankle MRI. BMC Musculoskelet Disord. 2017;18:1–9.

    Article  CAS  Google Scholar 

  38. Chhabra A, Soldatos T, Chalian M, Faridian-Aragh N, Fritz J, Fayad LM, et al. 3-Tesla magnetic resonance imaging evaluation of posterior tibial tendon dysfunction with relevance to clinical staging. J Foot Ankle Surg. 2011;50(3):320–8.

    Article  PubMed  Google Scholar 

  39. O’Neil JT, Pedowitz DI, Kerbel YE, Codding JL, Zoga AC, Raikin SM. Peroneal tendon abnormalities on routine magnetic resonance imaging of the foot and ankle. Foot Ankle Int. 2016;37(7):743–7.

    Article  PubMed  Google Scholar 

  40. Ersoz E, Tokgoz N, Kaptan AY, Ozturk AM, Ucar M. Anatomical variations related to pathological conditions of the peroneal tendon: evaluation of ankle MRI with a 3D SPACE sequence in symptomatic patients. Skeletal Radiol. 2019;48:1221–31.

    Article  PubMed  Google Scholar 

  41. Chhabra A, Soldatos T, Chalian M, Carrino JA, Schon L. Current concepts review: 3T magnetic resonance imaging of the ankle and foot. Foot Ankle Int. 2012;33(2):164–71.

    Article  PubMed  Google Scholar 

  42. Kumar Y, Alian A, Ahlawat S, Wukich DK, Chhabra A. Peroneal tendon pathology: pre-and post-operative high resolution US and MR imaging. Eur J Radiol. 2017;92:132–44.

    Article  PubMed  Google Scholar 

  43. Fritz B, Fritz J, Sutter R. 3D MRI of the ankle: a concise state-of-the-art review. In: Seminars in musculoskeletal radiology; 2021. New York, NY: Thieme Medical Publishers, Inc. 333 Seventh Avenue, 18th Floor; 2021. p. 514–26.

    Google Scholar 

  44. Rikken QG, Kerkhoffs GM. Osteochondral lesions of the talus: an individualized treatment paradigm from the Amsterdam perspective. Foot Ankle Clin. 2021;26(1):121–36.

    Article  PubMed  Google Scholar 

  45. Verhagen R. Prospective study on diagnostic strategies in osteochondral lesions of the talus: is MRI superior to helical CT? J Bone Joint Surg Br Vol. 2005;87(1):41–6.

    Article  CAS  Google Scholar 

  46. Gold GE, Chen CA, Koo S, Hargreaves BA, Bangerter NK. Recent advances in MRI of articular cartilage. AJR Am J Roentgenol. 2009;193(3):628.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bauer JS, Barr C, Henning TD, Malfair D, Ma CB, Steinbach L, et al. Magnetic resonance imaging of the ankle at 3.0 Tesla and 1.5 Tesla in human cadaver specimens with artificially created lesions of cartilage and ligaments. Invest Radiol. 2008;43(9):604–11.

    Article  PubMed  Google Scholar 

  48. Yi J, Lee YH, Hahn S, Albakheet SS, Song H-T, Suh J-S. Fast isotropic volumetric magnetic resonance imaging of the ankle: acceleration of the three-dimensional fast spin echo sequence using compressed sensing combined with parallel imaging. Eur J Radiol. 2019;112:52–8.

    Article  PubMed  Google Scholar 

  49. Nery C, Baumfeld D, Umans H, Yamada AF. MR imaging of the plantar plate: normal anatomy, turf toe, and other injuries. Magn Reson Imaging Clin. 2017;25(1):127–44.

    Article  Google Scholar 

  50. Wang J-e, Bai R-j, Zhan H-l, Li W-t, Qian Z-h, Wang N-l, et al. High-resolution 3T magnetic resonance imaging and histological analysis of capsuloligamentous complex of the first metatarsophalangeal joint. J Orthop Surg Res. 2021;16(1):1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Coughlin MJ, Baumfeld DS, Nery C. Second MTP joint instability: grading of the deformity and description of surgical repair of capsular insufficiency. Phys Sportsmed. 2011;39(3):132–41.

    Article  PubMed  Google Scholar 

  52. Albright RH, Brooks BM, Chingre M, Klein EE, Weil LS Jr, Fleischer AE. Diagnostic accuracy of magnetic resonance imaging (MRI) versus dynamic ultrasound for plantar plate injuries: a systematic review and meta-analysis. Eur J Radiol. 2022;152:110315.

    Article  PubMed  Google Scholar 

  53. Anderson RB. Turf toe injuries of the hallux metatarsophalangeal joint. Tech Foot Ankle Surg. 2002;1(2):102–11.

    Article  Google Scholar 

  54. Klein EE, Weil L Jr, Weil LS Sr, Knight J. Magnetic resonance imaging versus musculoskeletal ultrasound for identification and localization of plantar plate tears. Foot ankle Spec. 2012;5(6):359–65.

    Article  PubMed  Google Scholar 

  55. Yamada AF, Crema MD, Nery C, Baumfeld D, Mann TS, Skaf AY, et al. Second and third metatarsophalangeal plantar plate tears: diagnostic performance of direct and indirect MRI features using surgical findings as the reference standard. Am J Roentgenol. 2017;209(2):W100–8.

    Article  Google Scholar 

  56. Mann TS, Nery CAS, Baumfeld D, Fernandes EÁ. Degenerative injuries of the metatarsophalangeal plantar plate on magnetic resonance imaging: a new perspective, vol. 20. Brazil): Einstein (Sao Paulo; 2022. p. eAO6543.

    Google Scholar 

  57. Ehrmann C, Maier M, Mengiardi B, Pfirrmann CW, Sutter R. Calcaneal attachment of the plantar fascia: MR findings in asymptomatic volunteers. Radiology. 2014;272(3):807–14.

    Article  PubMed  Google Scholar 

  58. Draghi F, Gitto S. Imaging of plantar fascia disorders: findings on plain radiography, ultrasound and magnetic resonance imaging. Insights Into Imaging. 2017;8(1):69–78.

    Article  PubMed  Google Scholar 

  59. Yu JS. Pathologic and post-operative conditions of the plantar fascia: review of MR imaging appearances. Skeletal Radiol. 2000;29(9):491–501.

    Article  CAS  PubMed  Google Scholar 

  60. Rhim HC, Kwon J, Park J, Borg-Stein J, Tenforde AS. A systematic review of systematic reviews on the epidemiology, evaluation, and treatment of plantar fasciitis. Life (Basel). 2021;11(12):1287. https://doi.org/10.3390/life11121287.

  61. McNally EG, Shetty S. Plantar fascia: imaging diagnosis and guided treatment. Semin Musculoskelet Radiol. 2010;14(3):334–43.

    Article  PubMed  Google Scholar 

  62. Chhabra A, Madhuranthakam AJ, Andreisek G. Magnetic resonance neurography: current perspectives and literature review. Eur Radiol. 2018;28:698–707.

    Article  PubMed  Google Scholar 

  63. Chhabra A, Subhawong TK, Williams EH, Wang KC, Hashemi S, Thawait SK, et al. High-resolution MR neurography: evaluation before repeat tarsal tunnel surgery. AJR-Am J Roentgenol. 2011;197(1):175.

    Article  PubMed  Google Scholar 

  64. Zhang Y, He X, Li J, Ye J, Han W, Zhou S, et al. An MRI study of the tibial nerve in the ankle canal and its branches: a method of multiplanar reformation with 3D-FIESTA-C sequences. BMC Med Imaging. 2021;21(1):51.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Choo HJ, Suh J-S, Kim S-J, Huh Y-M, Kim MI, Lee J-W. Ankle MRI for anterolateral soft tissue impingement: increased accuracy with the use of contrast-enhanced fat-suppressed 3D-FSPGR MRI. Korean J Radiol. 2008;9(5):409–15.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yin Z, Zhang J, Kan S, Wang X. Diagnostic accuracy of imaging modalities for suspected scaphoid fractures: meta-analysis combined with latent class analysis. J Bone Joint Surg Br Vol. 2012;94(8):1077–85.

    Article  Google Scholar 

  67. Hakkarinen DK, Banh KV, Hendey GW. Magnetic resonance imaging identifies occult hip fractures missed by 64-slice computed tomography. J Emergency Med. 2012;43(2):303–7.

    Article  Google Scholar 

  68. Collin D, Geijer M, Göthlin JH. Computed tomography compared to magnetic resonance imaging in occult or suspect hip fractures. A retrospective study in 44 patients. Eur Radiol. 2016;26:3932–8.

    Article  PubMed  Google Scholar 

  69. Gyftopoulos S, Hasan S, Bencardino J, Mayo J, Nayyar S, Babb J, et al. Diagnostic accuracy of mri in the measurement of glenoid bone loss. Am J Roentgenol. 2012;199(4):873–8.

    Article  Google Scholar 

  70. Gyftopoulos S, Yemin A, Mulholland T, Bloom M, Storey P, Geppert C, et al. 3DMR osseous reconstructions of the shoulder using a gradient-echo based two-point Dixon reconstruction: a feasibility study. Skeletal Radiol. 2013;42:347–52.

    Article  PubMed  Google Scholar 

  71. Chang C-D, Wu JS, Mhuircheartaigh JN, Hochman MG, Rodriguez EK, Appleton PT, et al. Effect of sarcopenia on clinical and surgical outcome in elderly patients with proximal femur fractures. Skeletal Radiol. 2018;47:771–7.

    Article  PubMed  Google Scholar 

  72. Nordeck SM, Koerper CE, Adler A, Malhotra V, Xi Y, Liu GT, et al. Simulated radiographic bone and joint modeling from 3D ankle MRI: feasibility and comparison with radiographs and 2D MRI. Skeletal Radiol. 2017;46:651–64.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Kumar Taneja.

Ethics declarations

Conflict of interest

SB, AKT: no conflicts of interests. AC: book royalties—Jaypee and Wolters; research grants—Image Biopsy Lab Inc., Qure-AI; medical advisor—Image Biopsy Lab Inc.; consultant: ICON Medical Inc. and Celery Inc.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajaj, S., Chhabra, A. & Taneja, A.K. 3D isotropic MRI of ankle: review of literature with comparison to 2D MRI. Skeletal Radiol 53, 825–846 (2024). https://doi.org/10.1007/s00256-023-04513-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-023-04513-2

Keywords

Navigation