Skip to main content

Advertisement

Log in

Diffusion-weighted imaging (DWI) in diagnosis, staging, and treatment response assessment of multiple myeloma: a systematic review and meta-analysis

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To evaluate the role of diffusion-weighted imaging (DWI) in the initial diagnosis, staging, and assessment of treatment response in patients with multiple myeloma (MM).

Materials and methods

A systematic literature review was conducted in PubMed, the Cochrane Library, EMBASE, Scopus, and Web of Science databases. The primary endpoints were defined as the diagnostic performance of DWI for disease detection, staging of MM, and assessing response to treatment in these patients.

Results

Of 5881 initially reviewed publications, 33 were included in the final qualitative and quantitative meta-analysis. The diagnostic performance of DWI in the detection of patients with MM revealed pooled sensitivity and specificity of 86% (95% CI: 84–89) and 63% (95% CI: 56–70), respectively, with a diagnostic odds ratio (OR) of 14.98 (95% CI: 4.24–52.91). The pooled risk difference of 0.19 (95% CI: − 0.04–0.42) was reported in favor of upstaging with DWI compared to conventional MRI (value = 0.1). Treatment response evaluation and ADCmean value changes across different studies showed sensitivity and specificity of approximately 78% (95% CI: 72–83) and 73% (95% CI: 61–83), respectively, with a diagnostic OR of 7.21 in distinguishing responders from non-responders.

Conclusions

DWI is not only a promising tool for the diagnosis of MM, but it is also useful in the initial staging and re-staging of the disease and treatment response assessment. This can aid clinicians with earlier initiation or change in treatment strategy, which could have prognostic significance for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

IMWG:

International Myeloma Working Group

MGUS:

Monoclonal gammopathy of undetermined significance

MM:

Multiple myeloma

MRI:

Magnetic resonance imaging

MY-RADS:

Myeloma Response Assessment and Diagnosis System

NLR:

Negative likelihood ratio

PLR:

Positive likelihood ratio

ROC:

Receiver operating characteristic

SMM:

Smoldering multiple myeloma

SNR:

Signal-to-noise ratio

WBLD-CT:

Whole-body low-dose computed tomography

WB-MRI:

Whole-body MRI

18F-FDG PET/CT:

Fluorine-18 fluorodeoxyglucose positron emission tomography with computed tomography

References

  1. Kyle RA, Durie BGM, Rajkumar SV, Landgren O, Blade J, Merlini G, et al. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management. Leukemia. 2010;24:1121–7.

    Article  CAS  Google Scholar 

  2. Smith D, Yong K. Multiple myeloma. BMJ. 2013;346: f3863.

    Article  Google Scholar 

  3. Smith A, Wisloff F, Samson D. UK Myeloma Forum, Nordic Myeloma Study Group, British Committee for Standards in Haematology. Guidelines on the diagnosis and management of multiple myeloma 2005. Br J Haematol. 2006;132:410–51.

    Article  Google Scholar 

  4. Engelhardt M, Kleber M, Frydrychowicz A, Pache G, Schmitt-Gräff A, Wäsch R, et al. Superiority of magnetic resonance imaging over conventional radiographs in multiple myeloma. Anticancer Res. 2009;29:4745–50.

    Google Scholar 

  5. Petralia G, Padhani AR, Pricolo P, Zugni F, Martinetti M, Summers PE, et al. Whole-body magnetic resonance imaging (WB-MRI) in oncology: recommendations and key uses. Radiol Med. 2019;124:218–33.

    Article  Google Scholar 

  6. Jacobs MA, Pan L, Macura KJ. Whole-body diffusion-weighted and proton imaging: a review of this emerging technology for monitoring metastatic cancer. Semin Roentgenol. 2009;44:111–22.

    Article  Google Scholar 

  7. Ghanem N, Lohrmann C, Engelhardt M, Pache G, Uhl M, Saueressig U, et al. Whole-body MRI in the detection of bone marrow infiltration in patients with plasma cell neoplasms in comparison to the radiological skeletal survey. Eur Radiol. 2006;16:1005–14.

    Article  Google Scholar 

  8. Horger M, Weisel K, Horger W, Mroue A, Fenchel M, Lichy M. Whole-body diffusion-weighted MRI with apparent diffusion coefficient mapping for early response monitoring in multiple myeloma: preliminary results. AJR Am J Roentgenol. 2011;196:W790-795.

    Article  Google Scholar 

  9. Latifoltojar A, Hall-Craggs M, Bainbridge A, Rabin N, Popat R, Rismani A, et al. Whole-body MRI quantitative biomarkers are associated significantly with treatment response in patients with newly diagnosed symptomatic multiple myeloma following bortezomib induction. Eur Radiol. 2017;27:5325–36.

    Article  Google Scholar 

  10. Latifoltojar A, Yong KL, Hall-Craggs M, Rabin N, Popat R, Bainbridge A, et al. Whole body (WB) MRI in newly diagnosed multiple myeloma (MM): fat fraction changes at 8 weeks predict response to induction with bortezomib regimens. Blood. 2015;126:1850–1850.

    Article  Google Scholar 

  11. Giles SL, Messiou C, Collins DJ, Morgan VA, Simpkin CJ, West S, et al. Whole-body diffusion-weighted MR imaging for assessment of treatment response in myeloma. Radiology. 2014;271:785–94.

    Article  Google Scholar 

  12. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic re MA, Palumbo A, et al., International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014;15:e538–48.

    Article  Google Scholar 

  13. International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol. 2003;121:749–57.

    Article  Google Scholar 

  14. Sachpekidis C, Mosebach J, Freitag MT, Wilhelm T, Mai EK, Goldschmidt H, et al. Application of 18F-FDG PET and diffusion weighted imaging (DWI) in multiple myeloma: comparison of functional imaging modalities. Am J Nucl Med Mol Imaging. 2015;5:479–92.

    CAS  Google Scholar 

  15. Singh S, Pilavachi E, Dudek A, Bray TJP, Latifoltojar A, Rajesparan K, et al. Whole body MRI in multiple myeloma: optimising image acquisition and read times. PLoS ONE. 2020;15: e0228424.

    Article  CAS  Google Scholar 

  16. Withofs N, Cousin F, Tancredi T, Simoni P, Prijck BD, Hafraoui K, et al. Comparison of combined whole-body [18F]NaF and [18F]FDG PET/CT versus MRI for the detection of myeloma lesions. The Journal of Nuclear Medicine. 2016;57:606–606.

    Google Scholar 

  17. Durie BGM, Harousseau J-L, Miguel JS, Bladé J, Barlogie B, Anderson K, et al. International uniform response criteria for multiple myeloma. Leukemia. 2006;20:1467–73.

    Article  CAS  Google Scholar 

  18. Kumar S, Paiva B, Anderson KC, Durie B, Landgren O, Moreau P, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17:e328–46.

    Article  Google Scholar 

  19. Terpos E, Koutoulidis V, Fontara S, Zagouri F, Matsaridis D, Christoulas D, et al. Diffusion-weighted magnetic resonance imaging (DW-MRI) is able to distinguish diffuse from normal MRI pattern of marrow involvement in patients with multiple myeloma. Blood. 2014;124:3461–3461.

    Article  Google Scholar 

  20. Koutoulidis V, Fontara S, Terpos E, Zagouri F, Matsaridis D, Christoulas D, et al. Quantitative diffusion-weighted imaging of the bone marrow: an adjunct tool for the diagnosis of a diffuse MR imaging pattern in patients with multiple myeloma. Radiology. 2017;282:484–93.

    Article  Google Scholar 

  21. Narquin S, Ingrand P, Azais I, Delwail V, Vialle R, Boucebci S, et al. Comparison of whole-body diffusion MRI and conventional radiological assessment in the staging of myeloma. Diagn Interv Imaging. 2013;94:629–36.

    Article  CAS  Google Scholar 

  22. Durie BG, Harousseau JL, Miguel JS, et al. International uniform response criteria for multiple myeloma. Leukemia. 2006;20:1467–73.

    Article  CAS  Google Scholar 

  23. Durie BG, Salmon SE. A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer. 1975;36:842–54.

    Article  CAS  Google Scholar 

  24. Wang PF, Li YC, Xu YX, Wang XM, Guo LF, Fu C. [Role of whole-body diffusion weighted imaging (WB-DWI) in the diagnosis and monitoring of newly diagnosed multiple myeloma]. Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi. 2017;38 2:129–33.

  25. Klein B, Tarte K, Jourdan M, Mathouk K, Moreaux J, Jourdan E, et al. Survival and proliferation factors of normal and malignant plasma cells. Int J Hematol. 2003;78:106–13.

    Article  CAS  Google Scholar 

  26. Weininger M, Lauterbach B, Knop S, Pabst T, Kenn W, Hahn D, et al. Whole-body MRI of multiple myeloma: comparison of different MRI sequences in assessment of different growth patterns. Eur J Radiol. 2009;69:339–45.

    Article  Google Scholar 

  27. Park HY, Kim KW, Yoon MA, Lee MH, Chae EJ, Lee JH, et al. Role of whole-body MRI for treatment response assessment in multiple myeloma: comparison between clinical response and imaging response. Cancer Imaging. 2020;20:14.

    Article  Google Scholar 

  28. Takasu M, Kondo S, Akiyama Y, Takahashi Y, Maeda S, Baba Y, et al. Assessment of early treatment response on MRI in multiple myeloma: comparative study of whole-body diffusion-weighted and lumbar spinal MRI. PLoS ONE. 2020;15: e0229607.

    Article  CAS  Google Scholar 

  29. Pawlyn C, Fowkes L, Otero S, Jones JR, Boyd KD, Davies FE, et al. Whole-body diffusion-weighted MRI: a new gold standard for assessing disease burden in patients with multiple myeloma? Leukemia. 2016;30:1446–8.

    Article  CAS  Google Scholar 

  30. Decaux O, et al. Evaluation of whole-body diffusion-weighted magnetic resonance imaging for diagnosis and monitoring of multiple myeloma, Haematologica. 2011;96:S65–6.

  31. Brilleta É, Decauxc O, Bernardc A-M, Devillersc A, Chapellec T, Bertaud V, et al. Comparison between whole-body diffusion MRI and 18FDG PET/CT in the diagnosis of symptomatic myeloma. Medecine Nucleaire. 2012;36:313–9.

    Google Scholar 

  32. Giles SL, deSouza NM, Collins DJ, Morgan VA, West S, Davies FE, et al. Assessing myeloma bone disease with whole-body diffusion-weighted imaging: comparison with x-ray skeletal survey by region and relationship with laboratory estimates of disease burden. Clin Radiol. 2015;70:614–21.

    Article  CAS  Google Scholar 

  33. Barwick T, Orton M, Koh DM, Kaiser M, Rockall A, Tunariu N, et al. Repeatability and reproducibility of apparent diffusion coefficient and fat fraction measurement of focal myeloma lesions on whole body magnetic resonance imaging. BJR The British Institute of Radiology. 2021;94:20200682.

    Article  Google Scholar 

  34. Mosebach J, Sachpekidis C, Fard N, Wilhelm T, Wilhelm M, Hillengass J, et al. Characterization of multiple myeloma osseous lesions and diffuse infiltration pattern by 18F-FDG-PET/CT, static MRI and diffusion-weighted MR Imaging (DWI-MRI): a comparative multimodality imaging study. Cancer Imaging. 2014;14:P33–P33.

    Article  Google Scholar 

  35. Berno T, et al. Whole-body diffusion-weighted MRI and 18F-FDG PET-CT in the assessment of bone disease in multiple myeloma. Clinical Lymphoma, Myeloma and Leukemia. 2013;13:S84.

  36. Rasche L, Angtuaco E, McDonald JE, Buros A, Stein C, Pawlyn C, et al. Low expression of hexokinase-2 is associated with false-negative FDG–positron emission tomography in multiple myeloma. Blood. 2017;130:30–4.

    Article  CAS  Google Scholar 

  37. Chenevert TL, Sundgren PC, Ross BD. Diffusion imaging: insight to cell status and cytoarchitecture. Neuroimaging Clinics Elsevier. 2006;16:619–32.

    Article  Google Scholar 

  38. Hillengass J, Bäuerle T, Bartl R, Andrulis M, McClanahan F, Laun FB, et al. Diffusion-weighted imaging for non-invasive and quantitative monitoring of bone marrow infiltration in patients with monoclonal plasma cell disease: a comparative study with histology. Br J Haematol. 2011;153:721–8.

    Article  Google Scholar 

  39. Lemke A, et al. Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple b-values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Invest Radiol. 2009;44(12):769–75. (https://pubmed.ncbi.nlm.nih.gov/19838121/)

  40. Luciani A, Vignaud A, Cavet M, Nhieu JTV, Mallat A, Ruel L, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging – pilot study. Radiology. 2008;249:891–9.

    Article  Google Scholar 

  41. Le Bihan D. Intravoxel incoherent motion imaging using steady-state free precession. Magn Reson Med. 1988;7:346–51 (John Wiley & Sons, Ltd).

    Article  Google Scholar 

  42. Sezer O, Niemöller K, Jakob C, Zavrski I, Heider U, Eucker J, et al. Relationship between bone marrow angiogenesis and plasma cell infiltration and serum beta2-microglobulin levels in patients with multiple myeloma. Annals of hematology. 2001;80(10):598–601.

    Article  CAS  Google Scholar 

  43. Winfield JM, Poillucci G, Blackledge MD, Collins DJ, Shah V, Tunariu N, et al. Apparent diffusion coefficient of vertebral haemangiomas allows differentiation from malignant focal deposits in whole-body diffusion-weighted MRI. Eur Radiol. 2018;28:1687–91.

    Article  Google Scholar 

  44. Messiou C, Giles S, Collins DJ, West S, Davies FE, Morgan GJ, et al. Assessing response of myeloma bone disease with diffusion-weighted MRI. Br J Radiol. 2012;85:e1198–203.

    Article  CAS  Google Scholar 

  45. Lavdas I, Rockall AG, Castelli F, Sandhu RS, Papadaki A, Honeyfield L, et al. Apparent diffusion coefficient of normal abdominal organs and bone marrow from whole-body DWI at 1.5 T: the effect of sex and age. Am J Roentgenol Am Roentgen Ray Soc. 2015;205:242–50.

    Article  Google Scholar 

  46. Herneth AM, Friedrich K, Weidekamm C, Schibany N, Krestan C, Czerny C, et al. Diffusion weighted imaging of bone marrow pathologies. Eur J Radiol. 2005;55:74–83.

    Article  Google Scholar 

  47. Dutoit JC, Vanderkerken MA, Anthonissen J, Dochy F, Verstraete KL. The diagnostic value of SE MRI and DWI of the spine in patients with monoclonal gammopathy of undetermined significance, smouldering myeloma and multiple myeloma. Eur Radiol. 2014;24:2754–65.

    Article  Google Scholar 

  48. Messiou C, Collins DJ, Morgan VA, Desouza NM. Optimising diffusion weighted MRI for imaging metastatic and myeloma bone disease and assessing reproducibility. Eur Radiol. 2011;21:1713–8.

    Article  CAS  Google Scholar 

  49. Hernandez JM, Montesinos O, Mateo AG, Queizán JA, del Peral GS, Olivier C, et al. Usefulness of whole-body diffusion-weighted MRI (WB-MRI) with apparent diffusion coefficient (ADC) in the differentiation of monoclonal gammopathies. Clin Lymphoma, Myeloma and Leukemia. 2015;15:e90-1 (Elsevier).

    Article  Google Scholar 

  50. Burns R, et al. Whole-body PET/MRI for multiple myeloma staging: Impact of 18F-FDG uptake and MR sequence design on focal lesion and bone marrow infiltration assessment. Eur J Nucl Med Mol Imaging. 2018;45:S235. 

  51. Squillaci E, Bolacchi F, Altobelli S, Franceschini L, Bergamini A, Cantonetti M, et al. Pre-treatment staging of multiple myeloma patients: comparison of whole-body diffusion weighted imaging with whole-body T1-weighted contrast-enhanced imaging. Acta Radiol SAGE Publications. 2015;56:733–8.

    Article  Google Scholar 

  52. Auger S, Exbrayat C, Decoux E, Aufort S, Plassot C, Donadio D, et al. Contribution of diffusion and ADC sequences in whole body MRI for myeloma staging. Haematologica. Ferrata Storti Foundation via Guiseppe Belli 4, 27100 Pavia, Italy; 2013. p. 599–599.

  53. Bourillon C, Rahmouni A, Lin C, Belhadj K, Beaussart P, Vignaud A, et al. Intravoxel incoherent motion diffusion-weighted imaging of multiple myeloma lesions: correlation with whole-body dynamic contrast agent–enhanced MR imaging. Radiol Radiol Soc North Am. 2015;277:773–83.

    Google Scholar 

  54. Shah R, Stieltjes B, Andrulis M, Pfeiffer R, Sumkauskaite M, Delorme S, et al. Intravoxel incoherent motion imaging for assessment of bone marrow infiltration of monoclonal plasma cell diseases. Ann Hematol. 2013;92:1553–7 (Springer).

    Article  Google Scholar 

  55. Padhani A. Guidelines for acquisition, interpretation, and reporting of whole-body MRI in myeloma: myeloma response assessment and diagnosis system. Radiology. 2019;291:5–13.

    Article  Google Scholar 

  56. Sommer G, Klarhöfer M, Lenz C, Scheffler K, Bongartz G, Winter L. Signal characteristics of focal bone marrow lesions in patients with multiple myeloma using whole body T1w-TSE, T2w-STIR and diffusion-weighted imaging with background suppression. Eur Radiol. 2011;21:857–62 (Springer).

    Article  Google Scholar 

  57. Wu C, Huang J, Xu W-B, Guan Y-J, Ling H-W, Mi J-Q, et al. Discriminating depth of response to therapy in multiple myeloma using whole-body diffusion-weighted MRI with apparent diffusion coefficient: preliminary results from a single-center study. Acad Radiol. 2018;25:904–14 (Elsevier).

    Article  Google Scholar 

  58. Huang W, Yang M, Sui W, Deng S, Liu W, Ji X, et al. The correlation between findings of whole-body diffusion weighted imaging and clinical result in patients with multiple myeloma. Zhonghua Yi Xue Za Zhi. 2019;99:664–8.

    CAS  Google Scholar 

  59. Lacognata C, Crimì F, Guolo A, Varin C, De March E, Vio S, et al. Diffusion-weighted whole-body MRI for evaluation of early response in multiple myeloma. Clin Radiol. 2017;72:850–7 (Elsevier).

    Article  CAS  Google Scholar 

  60. Horger M, Weisel K, Bares R, Ernemann U, Claussen C, Lichy M, et al. Modern imaging techniques during therapy in patients with multiple myeloma. Acta radiologica. SAGE Publications Sage UK: London, England; 2011;52:881–8.

  61. Bonaffini PA, Ippolito D, Casiraghi A, Besostri V, Franzesi CT, Sironi S. Apparent diffusion coefficient maps integrated in whole-body MRI examination for the evaluation of tumor response to chemotherapy in patients with multiple myeloma. Acad Radiol. 2015;22:1163–71 (Elsevier).

    Article  Google Scholar 

  62. Wang M, Delasalle K, Feng L, Thomas S, Giralt S, Qazilbash M, et al. CR represents an early index of potential long survival in multiple myeloma. Bone Marrow Transplant. 2010;45:498–504 (Nature Publishing Group).

    Article  Google Scholar 

  63. Moreau P, Attal M, Facon T. Frontline therapy of multiple myeloma. Blood. 2015;125:3076–84.

    Article  CAS  Google Scholar 

  64. Rosiñol L, Oriol A, Teruel AI, Hernández D, López-Jiménez J, de la Rubia J, et al. Superiority of bortezomib, thalidomide, and dexamethasone (VTD) as induction pretransplantation therapy in multiple myeloma: a randomized phase 3 PETHEMA/GEM study. Blood, The Journal of the American Society of Hematology. American Society of Hematology Washington, DC; 2012;120:1589–96.

  65. Rasche L, Schinke CD, Alapat D, Gershner G, Johnson SK, Thanendrarajan S, et al. Functional imaging detects residual disease in MRD-negative multiple myeloma patients who subsequently relapse. Blood. 2017;130:4510 (Elsevier).

    Google Scholar 

  66. Zamagni E, Tacchetti P, Terragna C, Cavo M. Multiple myeloma: disease response assessment. Expert Rev Hematol. 2016;9:831–7 (Taylor & Francis).

    Article  CAS  Google Scholar 

  67. Stetler-Stevenson M, Paiva B, Stoolman L, Lin P, Jorgensen JL, Orfao A, et al. Consensus guidelines for myeloma minimal residual disease sample staining and data acquisition. Cytometry Part B Clin Cytometry. 2016;90:26–30 (Wiley Online Library).

    Article  CAS  Google Scholar 

  68. Spina F, Potepan P, Trecate G, Montin E, Montefusco V, Laffranchi A, et al. Results of a prospective study comparing whole-body diffusion-weighted magnetic resonance imaging with skeletal X-ray and magnetic resonance of the spine for assessing bone disease in multiple myeloma. Blood. 2012;120:2913 (Elsevier).

    Article  Google Scholar 

  69. Fernández-Poveda E, Cabañas V, Moreno MJ, Blanquer Blanquer M, Moraleda JM. Prognostic value of diffusion-weighted magnetic resonance imaging in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood. 2019;134:3146.

    Article  Google Scholar 

  70. Latifoltojar A, Hall-Craggs M, Rabin N, Popat R, Bainbridge A, Dikaios N, et al. Whole body magnetic resonance imaging in newly diagnosed multiple myeloma: early changes in lesional signal fat fraction predict disease response. Br J Haematol. 2017;176:222–33 (Wiley Online Library).

    Article  Google Scholar 

  71. Padhani AR, Koh D-M, Collins DJ. Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology. 2011;261:700–18 (Radiological Society of North America, Inc.).

    Article  Google Scholar 

  72. Lecouvet F, et al. MRI for response assessment in metastatic bone disease. Eur Radiol. 2013;23(7):1986–97. (https://pubmed.ncbi.nlm.nih.gov/23455764/).

  73. Lecouvet FE, Vekemans M-C, Van Den Berghe T, Verstraete K, Kirchgesner T, Acid S, et al. Imaging of treatment response and minimal residual disease in multiple myeloma: state of the art WB-MRI and PET/CT. Skelet Radiol. Springer; 2021;1–22. ( https://pubmed.ncbi.nlm.nih.gov/34363522/

  74. Mahale A, Maruvaneni S, Kumar A, Ullal S, Fernandes M. Role of Diffusion Weighted imaging in differentiating benign from pathological vertebral collapse using ADC values. J Clin Diagn Res 2019;13.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Chalian.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

For this type of study, consent for publication is not required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• The development of functional MRI sequences such as diffusion-weighted imaging (DWI) has made a functional assessment of lesions feasible.

• Diffusion-weighted imaging (DWI) has a role in the diagnosis, staging, and treatment response of multiple myeloma.

• DWI can quantitatively assess tissue cellularity by detecting free water molecule movements depicted on apparent diffusion coefficient (ADC) maps.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7619 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torkian, P., Mansoori, B., Hillengass, J. et al. Diffusion-weighted imaging (DWI) in diagnosis, staging, and treatment response assessment of multiple myeloma: a systematic review and meta-analysis. Skeletal Radiol 52, 565–583 (2023). https://doi.org/10.1007/s00256-022-04119-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-022-04119-0

Keywords

Navigation