Skip to main content

Advertisement

Log in

Update on imaging in chronic kidney disease-mineral and bone disorder: promising role of functional imaging

  • Review Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Disorders of mineral metabolism and bone disease are common complications in chronic kidney disease (CKD) patients and are associated with increased morbidity and mortality. Bone biopsies, bone scintigraphy, biochemical markers, and plain films have been used to assess bone disorders and bone turnover. Of these, functional imaging is less invasive than bone/marrow sampling, more specific than serum markers and is therefore ideally placed to assess total skeletal metabolism. 18F-sodium fluoride (NaF) PET/CT is an excellent bone-seeking agent superior to conventional bone scan in CKD patients due to its high bone uptake, rapid single-pass extraction, and minimal binding to serum proteins. Due to these properties, 18F-NaF can better assess the skeletal metabolism on primary diagnosis and following treatment in CKD patients. With the increased accessibility of PET scanners, it is likely that PET scanning with bone-specific tracers such as 18F-NaF will be used more regularly for clinical assessment and quantitation of bone kinetics. This article describes the pattern of scintigraphic/functional appearances secondary to musculoskeletal alterations that might occur in patients with CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4:
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kidney disease: improving global outcomes (KDIGO) CKDMBD working group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD–MBD). Kidney Int. 2009;Suppl 113: S1-S130.

  2. Jha V, Gaecia-Garcia G, Iseki K, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382:260–72.

    PubMed  Google Scholar 

  3. National Institutes of Health. 2016 USRDS Annual Data Report: epidemiology of kidney disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases;2016.

  4. Centers for disease control and prevention. Chronic Kidney Disease Surveillance System—United States. website. http://www.cdc.gov/ckd. Accessed 30th August 2021.

  5. Kazancioğlu R. Risk factors for chronic kidney disease: an update. Kidney Int Suppl. 2011;2013(3):368–71.

    Google Scholar 

  6. Ketteler M, Block GA, Evenepoel P, et al. KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of CKD-MBD. Kidney Int Suppl. 2017;7(Suppl 1):1–59.

    Google Scholar 

  7. Sidibé A, Moore L, Jean S, et al. Fracture risk in dialysis and kidney transplanted patients: a protocol for systematic review and meta-analysis. Syst Rev. 2017;6(1):37.

    PubMed  PubMed Central  Google Scholar 

  8. Butler AM, Olshan AF, Kshirsagar AV, et al. Cancer incidence among US Medicare ESRD patients receiving hemodialysis, 1996–2009. Am J Kidney Dis. 2015;65:763.

    PubMed  PubMed Central  Google Scholar 

  9. Vajdic CM, McDonald SP, McCredie MR, et al. Cancer incidence before and after kidney transplantation. JAMA. 2006;296:2823–31.

    CAS  PubMed  Google Scholar 

  10. Moe S, Drueke T, Cunningham J, et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int. 2006;69:1945–53.

    CAS  PubMed  Google Scholar 

  11. National Kidney Foundation. K/DOQI Clinical Practice Guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis. 2003;42(suppl 3):S1-201.

    Google Scholar 

  12. Coen G, Ballanti P, Bonucci E, et al. Renal osteodystrophy in predialysis and hemodialysis patients: comparison of histologic patterns and diagnostic predictivity of intact PTH. Nephron. 2002;91:103–11.

    CAS  PubMed  Google Scholar 

  13. Davenport MS, Perazella MA, Yee J, et al. Use of intravenous iodinated contrast media in patients with kidney disease: consensus statements from the American College of Radiology and the National Kidney Foundation. Radiology. 2020;294:660–8.

    PubMed  Google Scholar 

  14. Malluche HH, Monier-Faugere MC. Risk of adynamic bone disease in dialyzed patients. Kidney Int Suppl. 1992;38:S62–7.

    CAS  PubMed  Google Scholar 

  15. Vervoloet MG, Brandenburg VM. Circulating markers of bone turnover. J Nephrol. 2017;30:663–70.

    Google Scholar 

  16. Belino C, Meng C, Pereira L, et al. The role of bone biomarkers and new imaging techniques in the management of patients with CKD-MBD. Port J Nephrol Hypert. 2017;31:293–9.

    Google Scholar 

  17. Evenepoel P, Cavalier E, D’Haese PC. Biomarkers predicting bone turnover in the setting of CKD. Curr Osteoporos Rep. 2017;15:178–86.

    PubMed  Google Scholar 

  18. Pelletier S, Dubourg L, Carlier MC, et al. The relation between renal function and serum sclerostin in adult patients with CKD. Clin J Am Soc Nephrol. 2013;8:819–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Smith ER. The use of fibroblast growth factor 23 testing in patients with kidney disease. Clin J Am Soc Nephrol. 2014;9:1283–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Fliser D, Kollerits B, Neyer U, et al. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J Am Soc Nephrol. 2007;18:2600–8.

    CAS  PubMed  Google Scholar 

  21. Nakatani T, Sarraj B, Ohnishi M, et al. In vivo genetic evidence for klotho-dependent, fibroblast growth factor 23 (Fgf23) –mediated regulation of systemic phosphate homeostasis. FASEB J. 2009;23:433–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zou D, Wu W, He Y, Ma S, Gao J. The role of Klotho in chronic kidney disease. BMC Nephrol. 2018;19:285–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Malluche HH, Monier-Faugere MC. Renal osteodystrophy: what’s in a name? Presentation of a clinically useful new model to interpret bone histologic findings. Clin Nephrol. 2006;65:235–42.

    CAS  PubMed  Google Scholar 

  24. Moorthi RN, Moe SM. Recent advances in the noninvasive diagnosis of renal osteodystrophy. Kidney Int. 2013;84:886–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Joy MS, Karagiannis PC, Peyerl FW. Outcomes of secondary hyperparathyroidism in chronic kidney disease and the direct costs of treatment. J Manag Care Pharm. 2007;13:397–411.

    PubMed  Google Scholar 

  26. Sherrard DJ, Hercz G, Pei Y, Maloney NA, Greenwood C, Manuel A, et al. The spectrum of bone disease in end-stage renal failure–an evolving disorder. Kidney Int. 1993;43:436–42.

    CAS  PubMed  Google Scholar 

  27. Brandenburg V, Floege J. Adynamic bone disease-bone and beyond. NDT Plus. 2008;3:135–47.

    Google Scholar 

  28. Rocha LA, Higa A, Barreto FC, et al. Variant of adynamic bone disease in hemodialysis patients: fact or fiction? Am J Kidney Dis. 2006;48:430–6.

    PubMed  Google Scholar 

  29. Andress DL. Adynamic bone in patients with chronic kidney disease. Kidney Int. 2008;73:1345–54.

    CAS  PubMed  Google Scholar 

  30. Sprague SM, Bellorin-Font E, Jorgetti V, Carvalho AB, Malluche HH, Ferreira A, et al. Diagnostic accuracy of bone turnover markers and bone histology in patients with CKD treated by dialysis. Am J Kidney Dis. 2016;67:559–66.

    PubMed  Google Scholar 

  31. Lim CY, Ong KO. Various musculoskeletal manifestations of chronic renal insufficiency. Clin Radiol. 2013;68:e397–411.

    CAS  PubMed  Google Scholar 

  32. Goodman WG, Quarles LD. Development and progression of secondary hyperparathyroidism in chronic kidney disease: lessons from molecular genetics. Kidney Int. 2008;74:276–88.

    CAS  PubMed  Google Scholar 

  33. Resnick D, Niwayama G. Parathyroid disorders and renal osteodystrophy. In: Resnick D, Niwayama G, editors. Diagnosis of bone and joint disorders. Philadelphia: W.B. Saunders; 1995. p. 2012–75.

    Google Scholar 

  34. Murphey MD, Sartoris DJ, Quale JL, et al. Musculoskeletal manifestations of chronic renal insufficiency. Radiographics. 1993;13:357–79.

    CAS  PubMed  Google Scholar 

  35. Wittenberg A. The rugger jersey spine sign. Radiology. 2004;230:491–2.

    PubMed  Google Scholar 

  36. Mataliotakis G, Lykissas MG, Mavrodontidis AN, et al. Femoral neck fractures secondary to renal osteodystrophy: literature review and treatment algorithm. J Musculoskelet Neuronal Interact. 2009;9:130–7.

    CAS  PubMed  Google Scholar 

  37. Al-Gahtany M, Cusimano M, Singer W, Bilbao J, Kovacs K, Marotta T. Brown tumors of the skull base. Case report and review of the literature. J Neurosurg. 2003;98:417–20.

  38. Jevtic V. Imaging of renal osteodystrophy. Eur J Radiol. 2003;46:85–95.

    CAS  PubMed  Google Scholar 

  39. Scarpioni R, Ricardi M, Albertazzi V, et al. Dialysis-related amyloidosis: challenges and solutions. Int J Nephrol Renovasc Dis. 2016;9:319–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kiss E, Keusch G, Zanetti M, et al. Dialysis-related amyloidosis revisited. AJR Am J Roentgenol. 2005;185:1460.

    PubMed  Google Scholar 

  41. Danesh F, Ho LT. Dialysis-related amyloidosis: history and clinical manifestations. Semin Dial. 2001;14:80–5.

    CAS  PubMed  Google Scholar 

  42. Maruyama H, Gejyo F, Arakawa M. Clinical studies of destructive spondyloarthropathy in long-term hemodialysis patients. Nephron. 1992;61:37–44.

    CAS  PubMed  Google Scholar 

  43. Jaffe JA, Liftman C, Glickman JM. Frequency of elevated serum aluminum levels in adult dialysis patients. AM J Kidney Dis. 2005;66:316–9.

    Google Scholar 

  44. Sundaram M, Dessner D, Ballal S. Solitary, spontaneous cervical and large bone fractures in aluminum osteodystrophy. Skeletal Radiol. 1991;20:91–4.

    CAS  PubMed  Google Scholar 

  45. Langevitz P, Buskila D, Stewart J, et al. Osteonecrosis in patients receiving dialysis: report of two cases and review of the literature. J Rheumatol. 1990;17:402–6.

    CAS  PubMed  Google Scholar 

  46. Jones N, Kjellstrand CM. Spontaneous tendon ruptures in patients on chronic dialysis. Am J Kidney Dis. 1996;28:861–6.

    CAS  PubMed  Google Scholar 

  47. Resnick D. Abnormalities of bone and soft tissue following renal transplantation. Semin Roentgenol. 1978; i3:329–340.

  48. Moorthi RN, Moe SM. Recent advances in the non-invasive diagnosis of renal osteodystrophy. Kidney Int. 2013;84:886–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bover J, Bailone L, López-Báez V, Benito S, Ciceri P, Galassi A, et al. Osteoporosis, bone mineral density and CKD-MBD: treatment considerations. J Nephrol. 2017. https://doi.org/10.1007/s40620-017-0404-z.

    Article  PubMed  Google Scholar 

  50. Lobao R, Carvalho AB, Cuppari L, et al. High prevalence of low bone mineral density in pre-dialysis chronic kidney disease patients: bone histomorphometric analysis. Clin Nephrol. 2004;62:432–9.

    CAS  PubMed  Google Scholar 

  51. Pimentel A, Bover J, Elder G, et al. The use of imaging techniques in chronic kidney disease-mineral and bone disorders (ckd-mbd)-a systematic review. Diagnostics (Basel). 2021;11:772.

    CAS  Google Scholar 

  52. Jamal S, Cheung AM, West S, et al. Bone mineral density by DXA and HR pQCT can discriminate fracture status in men and women with stages 3 to 5 chronic kidney disease. Osteoporos Int. 2012;23:2805–13.

    CAS  PubMed  Google Scholar 

  53. Seeman E, Delmas PD. Bone quality–the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354:2250–61.

    CAS  PubMed  Google Scholar 

  54. Jamal SA, Gilbert J, Gordon C, et al. Cortical pQCT measures are associated with fractures in dialysis patients. J Bone Miner Res. 2006;21:543–8.

    PubMed  Google Scholar 

  55. Lala D, Cheung AM, Gordon C, et al. Comparison of cortical bone measurements between pQCT and HR-pQCT. J Clin Densitom. 2012;15:275–81.

    PubMed  Google Scholar 

  56. Bacchetta J, Boutroy S, Vilayphiou N, et al. Early impairment of trabecular microarchitecture assessed with HR-pQCT in patients with stage II-IV chronic kidney disease. J Bone Miner Res. 2010;25:849–57.

    PubMed  Google Scholar 

  57. Sharma AK, Masterson R, Holt SG, et al. Emerging role of high resolution imaging in the detection of renal osteodystrophy. Nephrology. 2016;21:801–11.

    PubMed  Google Scholar 

  58. Folkesson J, Goldenstein J, Carballido-Gamio J, et al. Longitudinal evaluation of the effects of alendronate on MRI bone microarchitecture in postmenopausal osteopenic women. Bone. 2011;48:611–21.

    CAS  PubMed  Google Scholar 

  59. Frost ML, Blake GM, Park-Holohan SJ, et al. Long-term precision of 18F-fluoride PET skeletal kinetic studies in the assessment of bone metabolism. J Nucl Med. 2008;49:700–7.

    PubMed  Google Scholar 

  60. Hawkins RA, Choi Y, Huang SC, et al. Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J NuclMed. 1992;33:633–42.

    CAS  Google Scholar 

  61. Frost ML, Cook GJR, Blake GM, et al. A prospective study of risedronate on regional bone metabolism and blood flow at the lumbar spine measured by 18Ffluoride positron emission tomography. J Bone Miner Res. 2003;18:2215–22.

    CAS  PubMed  Google Scholar 

  62. Uchida K, Nakajima H, Miyazaki T, et al. Effects of alendronate on bone metabolism in glucocorticoid-induced osteoporosis measured by 18F-fluoride PET: a prospective study. J Nucl Med. 2009;50:1808–14.

    CAS  PubMed  Google Scholar 

  63. Installe J, Nzeusseu A, Bol A, et al. 18F-fluoride PET formonitoring therapeutic response in Paget’s disease of bone. J Nucl Med. 2005;46:1650–8.

    CAS  PubMed  Google Scholar 

  64. Messa C, Goodman WG, Hoh CK, et al. Bone metabolic activity measured with positron emission tomography and [18F]fluoride ion in renal osteodystrophy: correlation with bone histomorphometry. J Clin Endocrinol Metab. 1993;77:949–55.

    CAS  PubMed  Google Scholar 

  65. Aaltonen L, Koivuviita N, Seppänen M, et al. Correlation between 18F-Sodium Fluoride positron emission tomography and bone histomorphometry in dialysis patients. Bone. 2020.

  66. Usmani S, Marafi F, Esmail A, et al. A proof of concept study analyzing the clinical utility of 18F-sodium fluoride (NaF) PET-CT in skeletal staging of oncology patients with end-stage renal disease on dialysis. Nucl Med Commun. 2017;38:1067–75.

    PubMed  Google Scholar 

  67. Aaltonen L, Koivuviita N, Seppänen M, et al. Bone histomorphometry and 18F-sodium fluoride positron emission tomography imaging: comparison between only bone turnover-based and unified TMV-based classification of renal osteodystrophy [published online ahead of print, 2021 Jun 17]. Calcif Tissue Int. 2021;https://doi.org/10.1007/s00223-021-00874-9.

  68. Cook GJ, Lodge MA, Blake GM, et al. Differences in skeletal kinetics between vertebral and humeral bone measured by 18F-fluoride positron emission tomography in postmenopausal women. J Bone Miner Res. 2000;15:763–9.

    CAS  PubMed  Google Scholar 

  69. Torres A, Lorenzo V, Hernandez D, et al. Bone disease in predialysis, hemodialysis, and CAPD patients: Evidence of a better bone response to PTH. Kidney Int. 1995;47:1434–42.

    CAS  PubMed  Google Scholar 

  70. Stacul F, van der Molen, Aart J, Reimer P, Webb JA, et al. Contrast induced nephropathy: updated ESUR contrast media safety committee guidelines. Eur Radiol. 2011;21: 2527–2541.

  71. Polena S, Yang S, Alam R, Gricius J, Gupta JR, et al. Nephropathy in critically Ill patients without preexisting renal disease. Proc West Pharmacol Soc. 2005;48:134–5.

    PubMed  Google Scholar 

  72. Katzberg RW, Newhouse JH. Intravenous contrast medium-induced nephrotoxicity: is the medical risk really as great as we have come to believe? Radiology. 2010;1:21–8.

    Google Scholar 

  73. Khawaja AZ, Cassidy DB, Al Shakarchi J, et al. Revisiting the risks of MRI with gadolinium based contrast agents-review of literature and guidelines. Insights Imaging. 2015;6:553–8.

    PubMed  PubMed Central  Google Scholar 

  74. European Medicines Agency (2010) Assessment report for gadolinium-containing contrast agents. In: Proced. No. EMEA/H/A-31/1097.

  75. Ryan PJ, Fogelman I. Bone scintigraphy in metabolic bone disease. Semin Nucl Med. 1997;27:291–305.

    CAS  PubMed  Google Scholar 

  76. Abdelrazek S, Szumowski P, Rogowski F, et al. Bone scan in metabolic bone diseases. Review. Nucl Med Rev Cent East Eur. 2012;15:124–131.

  77. Fogelman I, McKillop JH, Greig WR, et al. Pseudofractures of the ribs detected by bone scanning. J Nucl Med. 1977;18:1236–7.

    CAS  PubMed  Google Scholar 

  78. de Graaf P, Schicht IM, Pauwels EK, et al. Bone scintigraphic in uremic pulmonary calcification. J Nucl Med. 1984;20:201–6.

    Google Scholar 

  79. Czernin J, Satyamurthy N, Schiepers C. Molecular mechanisms of bone 18F-NaF deposition. J Nucl Med. 2010;51:1826–9.

    CAS  PubMed  Google Scholar 

  80. Vaz S, Usmani S, Gnanasegaran G, et al. Molecular imaging of bone metastases using bone targeted tracers. Q J Nucl Med Mol Imaging. 2019;63:112–28.

    PubMed  Google Scholar 

  81. Even-Sapir E, Metser U, Mishani E, et al. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47:287–97.

    PubMed  Google Scholar 

  82. Segall G, Delbeke D, Stabin MG, et al. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med. 2010;51:1813–20.

    PubMed  Google Scholar 

  83. Kuhlman JE, Ren H, Hutchins GM, Fishman EK. Fulminant pulmonary calcification complicating renal transplantation: CT demonstration. Radiology. 1989;173:459–60.

    CAS  PubMed  Google Scholar 

  84. Fathi I, Sakr M. Review of tumoral calcinosis: a rare clinico-pathological entity. World J Clin Cases. 2014;2:409–14.

    PubMed  PubMed Central  Google Scholar 

  85. Mizobuchi M, Towler D, Slatopolsky E, et al. Vasuclar calcification: the killer of patients with chronic kidney disease. J Am Soc Nephrol. 2009;20:1453–64.

    CAS  PubMed  Google Scholar 

  86. Stompór T. Coronary artery calcification in chronic kidney disease: An update. World J Cardiol. 2014;6:115–29.

    PubMed  PubMed Central  Google Scholar 

  87. Dweck MR, Chow MW, Joshi NV, et al. Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol. 2012;59:1539–48.

    CAS  PubMed  Google Scholar 

  88. Joshi NV, Vesey AT, Williams MC, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014;383:705–13.

    PubMed  Google Scholar 

  89. Derlin T, Richter U, Bannas P, et al. Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J Nucl Med. 2010;51:862–5.

    PubMed  Google Scholar 

  90. Derlin T, Wisotzki C, Richter U, et al. In vivo imaging of mineral deposition in carotid plaque using 18F-sodium fluoride PET/CT: correlation with atherogenic risk factors. J Nucl Med. 2011;52:362–8.

    PubMed  Google Scholar 

  91. Li L, Li X, Jia Y, et al. Sodium-fluoride PET-CT for the non-invasive evaluation of coronary plaques in symptomatic patients with coronary artery disease: a cross-correlation study with intravascular ultrasound. Eur J Nucl Med Mol Imaging. 2018;45:2181–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Silva Mendes BI, Oliveira-Santos M, Vidigal Ferreira MJ. Sodium fluoride in cardiovascular disorders: a systematic review. J Nucl Cardiol. 2019. Aug 6. [Epub ahead of print].

  93. Yoder JS, Kogan F, Gold GE. PET-MRI for the study of metabolic bone disease. Curr Osteoporos Rep. 2018;16:665–73.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Guarantor of integrity: Sharjeel Usmani; Study concepts/design: Sharjeel Usmani, Gopinath Gnanasegaran, Najeeb Ahmed, Fahad Marafi, and Tim Van den Wyngaert; Literature research: Sharjeel Usmani, Najeeb Ahmed, Gopinath Gnanasegaran, and Tim Van den Wyngaert; Data acquisition: Sharjeel Usmani; Image analysis/interpretation: Sharjeel Usmani, Najeeb Ahmed, Gopinath Gnanasegaran, and Tim Van den Wyngaert; Manuscript preparation: Sharjeel Usmani, Gopinath Gnanasegaran, Najeeb Ahmed, and Tim Van den Wyngaert; Manuscript definition of intelletual content: Sharjeel Usmani, Gopinath Gnanasegaran, Fahad Marafi, Najeeb Ahmed, and Tim Van den Wyngaert; Manuscript editing: Sharjeel Usmani, Gopinath Gnanasegaran, Najeeb Ahmed, Fahad Marafi, and Tim Van den Wyngaert; Manuscript revision/review: Sharjeel Usmani, Gopinath Gnanasegaran, Fahad Marafi, Najeeb Ahmed, and Tim Van den Wyngaert; Manuscript final version approval: Sharjeel Usmani, Gopinath Gnanasegaran, Fahad Marafi, Najeeb Ahmed, and Tim Van den Wyngaert.

Corresponding author

Correspondence to Sharjeel Usmani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usmani, S., Ahmed, N., Gnanasegaran, G. et al. Update on imaging in chronic kidney disease-mineral and bone disorder: promising role of functional imaging. Skeletal Radiol 51, 905–922 (2022). https://doi.org/10.1007/s00256-021-03905-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-021-03905-6

Keywords

Navigation