Skip to main content

Advertisement

Log in

Accuracy of craniocervical measurements on CT for identifying partial or complete craniocervical ligament injuries in pediatric patients

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To assess the accuracy of craniocervical measurements for identifying craniocervical injuries and the frequency of subjective findings of craniocervical injuries on CT in pediatric patients.

Methods

Case-controlled retrospective review of patients ≤ 16 years old with craniocervical junction injuries. Receiver operator curves were created for common craniocervical measurements on CT comparing patients with complete and partial craniocervical injuries to uninjured cohort. Frequency of subjective CT findings of craniocervical injury was assessed in the injured cohort.

Results

For complete disruption injuries (CD) (n = 27), C1–C2 distance (AUC = 0.90, 95%CI = 0.83–0.97), atlanto-occipital distance (AUC = 0.95–0.98, 95%CI = 0.90–1.00), and basion-dens distance (AUC = 0.90, 95%CI = 0.82–0.98) had excellent accuracy diagnosing injury. Powers ratio (AUC = 0.85, 95%CI = 0.76–0.94) had good, basion-posterior axial line (AUC = 0.74, 95%CI = 0.61–0.86) fair, and atlanto-dental distance (AUC = 0.69, 95%CI = 0.57–0.82) poor accuracy. For partial disruption injuries (PD) (n = 21), basion-dens distance (AUC = 0.75, 95%CI = 0.62–0.88) had fair accuracy diagnosing injury. Powers ratio (AUC = 0.63, 95%CI = 0.47–0.79), C1–C2 distance (AUC = 0.60, 95%CI = 0.45–0.75), atlanto-dental distance (AUC = 0.55, 95%CI = 0.39 = 0.71), atlanto-occipital distance (AUC = 0.63–0.65, 95%CI = 0.47–0.81), and basion-posterior axial line (AUC = 0.60, 95%CI = 0.44–0.76) all had poor accuracy. Eighty-one percent (n = 22) of CD and 38% (n = 8) of PD patients had non-concentric atlanto-occipital joints. One hundred percent of CD patients had ≥ 1 soft tissue finding and eighty-one percent (n = 22) had ≥ 2 findings. Seventy-three percent (n = 16) of PD patients had ≥ 1 soft tissue finding. Eighty-six percent (n = 18) of PD patients had non-concentric atlanto-occipital joints and/or soft tissue findings.

Conclusion

Craniocervical measurements have poor accuracy for identifying craniocervical injuries in pediatric patients with incomplete craniocervical ligament disruption. Subjective findings of craniocervical injury are frequently present on CT in pediatric patients and can help increase sensitivity for identifying injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Patel JC, Tepas JJ, Mollitt DL, Pieper P. Pediatric cervical spine injuries: defining the disease. J Pediatr Surg. 2001;36(2):373–6.

    Article  CAS  Google Scholar 

  2. Shin JI, Lee NJ, Cho SK. Pediatric cervical spine and spinal cord injury: a national database study. Spine (Phila Pa 1976). 2016;41(4):283–92.

    Article  Google Scholar 

  3. Kokoska ER, Keller MS, Rallo MC, Weber TR. Characteristics of pediatric cervical spine injuries. J Pediatr Surg. 2001;36(1):100–5.

    Article  CAS  Google Scholar 

  4. Mohseni S, Talving P, Branco BC, et al. Effect of age on cervical spine injury in pediatric population: a National Trauma Data Bank review. J Pediatr Surg. 2011;46(9):1771–6.

    Article  Google Scholar 

  5. Leonard JR, Jaffe DM, Kuppermann N, Olsen CS, Leonard JC. Cervical spine injury patterns in children. Pediatrics. 2014;133(5):e1179–88.

    Article  Google Scholar 

  6. Platzer P, Jaindl M, Thalhammer G, et al. Cervical spine injuries in pediatric patients. J Trauma. 2007;62(2):389–96 discussion 394-6.

    Article  Google Scholar 

  7. Beckmann NM, Chinapuvvula NR, Zhang X, West OC. Epidemiology and imaging classification of pediatric cervical spine injuries: twelve year experience at a level 1 trauma center. AJR. 2019.

  8. Wholey MH, Bruwer AJ, Baker HL. The lateral roentgenogram of the neck. Radiology. 1958;71:350–6.

    Article  CAS  Google Scholar 

  9. Hinck VC, Hopkins CE. Measurement of the atlanto-dental interval in the adult. Am J Roentgenol Radium Therapy, Nucl Med. 1960;84:945–5.

  10. Wackenheim A. Angles and lines of measurement in the craniovertebral region. New York: Springer-Verlag; 1974. p. 81–6.

    Google Scholar 

  11. Powers B, Miller MD, Kramer RS, Martinez S, Gehweiler JA. Traumatic anterior atlanto-occipital dislocation. Neurosurgery. 1979;4:12–7.

    Article  CAS  Google Scholar 

  12. Kaufman RA, Carroll CD, Buncher CR. Atlanto-occipital junction: standards for measurement in normal children. AJNR. 1987;8:995–9.

    CAS  PubMed  Google Scholar 

  13. Kadom N, Palasis S, Pruthi S, et al. ACR Appropriateness Criteria® suspected spine trauma-child. J Am Coll Radiol. 2019;16(5S):S286–99.

    Article  Google Scholar 

  14. Como JJ, Diaz JJ, Dunham CM, et al. Cervical spine injuries following trauma. J Trauma. 2009;67(3):651–9.

    Article  Google Scholar 

  15. Rojas CA, Bertozzi JC, Martinez CR, Whitlow J. Reassessment of the craniocervical junction: normal values on CT. AJNR Am J Neuroradiol. 2007;28(9):1819–23.

    Article  CAS  Google Scholar 

  16. Pang D, Nemzek WR, Zovickian J. Atlanto-occipital dislocation: part 1—normal occipital condyle-C1 interval in 89 children. Neurosurgery. 2007;61(3):514–21 discussion 521.

    Article  Google Scholar 

  17. Bertozzi JC, Rojas CA, Martinez CR. Evaluation of the pediatric craniocervical junction on MDCT. AJR Am J Roentgenol. 2009;192(1):26–31.

    Article  Google Scholar 

  18. Rojas CA, Hayes A, Bertozzi JC, Guidi C, Martinez CR. Evaluation of the C1-C2 articulation on MDCT in healthy children and young adults. AJR Am J Roentgenol. 2009;193(5):1388–92.

    Article  Google Scholar 

  19. Vachhrajani S, Sen AN, Satyan K, Kulkarni AV, Birchansky SB, Jea A. Estimation of normal computed tomography measurements for the upper cervical spine in the pediatric age group. J Neurosurg Pediatr. 2014;14(4):425–33.

    Article  Google Scholar 

  20. Bapuraj JR, Bruzek AK, Tarpeh JK, Pelissier L, Garton HJL, Anderson RCE, et al. Morphometric changes at the craniocervical junction during childhood. J Neurosurg Pediatr. 2019;21:1–9.

    Google Scholar 

  21. Li G, Passias P, Kozanek M, Shannon BD, Li G, Villamil F, et al. Interobserver reliability and intraobserver reproducibility of Powers ratio for assessment of atlanto-occipital junction: comparison of plain radiography and computed tomography. Eur Spine J. 2009;18(4):577–82.

    Article  CAS  Google Scholar 

  22. Gire JD, Roberto RF, Bobinski M, Klineberg EO, Durbin-Johnson B. The utility and accuracy of computed tomography in the diagnosis of occipitocervical dissociation. Spine J. 2013;13(5):510–9.

    Article  Google Scholar 

  23. du Plessis JP, Dix-Peek S, Hoffman EB, Wieselthaler N, Dunn RN. Pediatric atlanto-occipital dissociation: radiographic findings and clinical outcome. Evid Based Spine Care J. 2012;3(1):19–26.

    Article  Google Scholar 

  24. Martinez-Del-Campo E, Kalb S, Soriano-Baron H, Turner JD, Neal MT, Uschold T, et al. Computed tomography parameters for atlantooccipital dislocation in adult patients: the occipital condyle-C1 interval. J Neurosurg Spine. 2016;24(4):535–45.

    Article  Google Scholar 

  25. Harris JH Jr, Carson GC, Wagner LK. Radiologic diagnosis of traumatic occipitovertebral dissociation: 1. Normal occipitovertebral relationships on lateral radiographs of supine subjects. AJR Am J Roentgenol. 1994;162(4):881–6.

    Article  Google Scholar 

  26. Chang W, Alexander MT, Mirvis SE. Diagnostic determinants of craniocervical distraction injury in adults. AJR Am J Roentgenol. 2009;192(1):52–8.

    Article  Google Scholar 

  27. Vermess D, Rojas CA, Shaheen F, Roy P, Martinez CR. Normal pediatric prevertebral soft-tissue thickness on MDCT. AJR Am J Roentgenol. 2012;199(1):W130–3.

    Article  Google Scholar 

  28. Molière S, Zaragori-Benedetti C, Ehlinger M, Le Minor JM, Kremer S, Bierry G. Evaluation of paraspinal fat pad as an indicator of posterior ligamentous complex injury in cervical spine trauma. Radiology. 2017;282(3):790–7.

    Article  Google Scholar 

  29. Chilvers G, Janjua U, Choudhary S. Blunt cervical spine injury in adult polytrauma: incidence, injury patterns and predictors of significant ligament injury on CT. Clin Radiol. 2017;72(11):907–14.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas M. Beckmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beckmann, N.M., Cheekatla, S.K., Chinapuvvula, N.R. et al. Accuracy of craniocervical measurements on CT for identifying partial or complete craniocervical ligament injuries in pediatric patients. Skeletal Radiol 50, 159–169 (2021). https://doi.org/10.1007/s00256-020-03555-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-020-03555-0

Keywords

Navigation