Skip to main content
Log in

Routine clinical knee MR reports: comparison of diagnostic performance at 1.5 T and 3.0 T for assessment of the articular cartilage

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

Accurate assessment of knee articular cartilage is clinically important. Although 3.0 Tesla (T) MRI is reported to offer improved diagnostic performance, literature regarding the clinical impact of MRI field strength is lacking. The purpose of this study is to compare the diagnostic performance of clinical MRI reports for assessment of cartilage at 1.5 and 3.0 T in comparison to arthroscopy.

Materials and methods

This IRB-approved retrospective study consisted of 300 consecutive knees in 297 patients who had routine clinical MRI and arthroscopy. Descriptions of cartilage from MRI reports of 165 knees at 1.5 T and 135 at 3.0 T were compared with arthroscopy. The sensitivity, specificity, percent of articular surfaces graded concordantly, and percent of articular surfaces graded within one grade of the arthroscopic grading were calculated for each articular surface at 1.5 and 3.0 T. Agreement between MRI and arthroscopy was calculated with the weighted-kappa statistic. Significance testing was performed utilizing the z-test after bootstrapping to obtain the standard error.

Results and conclusions

The sensitivity, specificity, percent of articular surfaces graded concordantly, and percent of articular surfaces graded within one grade were 61.4%, 82.7%, 62.2%, and 77.5% at 1.5 T and 61.8%, 80.6%, 59.5%, and 75.6% at 3.0 T, respectively. The weighted kappa statistic was 0.56 at 1.5 T and 0.55 at 3.0 T. There was no statistically significant difference in any of these parameters between 1.5 and 3.0 T. Factors potentially contributing to the lack of diagnostic advantage of 3.0 T MRI are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Johnson VL, Hunter DJ. The epidemiology of osteoarthritis. Best Pract Res Clin Rheumatol. 2014;28(1):5–15.

    Article  PubMed  Google Scholar 

  2. Smith GD, Knutsen G, Richardson JB. A clinical review of cartilage repair techniques. J Bone Joint Surg Am. 2005;87(4):715–24.

    Google Scholar 

  3. Roemer FW, Winalski CS. State of the art: MR imaging after knee cartilage repair surgery1. 2015;277(1).

  4. Bondeson J. Are we moving in the right direction with osteoarthritis drug discovery? Expert Opin Ther Targets. 2011;15(12):1355–68.

    Article  CAS  PubMed  Google Scholar 

  5. Chevalier X, Eymard F, Richette P. Biologic agents in osteoarthritis: hopes and disappointments. Nat Rev Rheumatol. 2013;9(7):400–10.

    Article  CAS  PubMed  Google Scholar 

  6. Crema MD, Roemer FW, Marra MD, Burstein D, Gold GE, Eckstein F, et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics. 2011;31(1):37–61.

    Article  PubMed  Google Scholar 

  7. Kijowski R. Clinical cartilage imaging of the knee and hip joints. AJR Am J Roentgenol. 2010;195(3):618–28.

    Article  PubMed  Google Scholar 

  8. Figueroa D, Calvo R, Vaisman A, Carrasco MA, Moraga C, Delgado I. Knee chondral lesions: incidence and correlation between arthroscopic and magnetic resonance findings. Arthroscopy. 2007;23(3):312–5.

    Article  PubMed  Google Scholar 

  9. Friemert B, Oberländer Y, Schwarz W, Häberle HJ, Bähren W, Gerngroß H, et al. Diagnosis of chondral lesions of the knee joint: can MRI replace arthroscopy?: a prospective study. Knee Surg Sports Traumatol Arthrosc. 2004;12(1):58–64.

    Article  CAS  PubMed  Google Scholar 

  10. Quatman CE, Hettrich CM, Schmitt LC, Spindler KP. The clinical utility and diagnostic performance of magnetic resonance imaging for identification of early and advanced knee osteoarthritis: a systematic review. Am J Sports Med. 2011;39(7):1557–68.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Smith TO, Drew BT, Toms AP, Donell ST, Hing CB. Accuracy of magnetic resonance imaging, magnetic resonance arthrography and computed tomography for the detection of chondral lesions of the knee. Knee Surg Sports Traumatol Arthrosc. 2012;20(12):2367–79.

    Article  PubMed  Google Scholar 

  12. Sonin AH, Pensy RA, Mulligan ME, Hatem S. Grading articular cartilage of the knee using fast spin-echo proton density-weighted MR imaging without fat suppression. Am J Roentgenol. 2002 Nov;179(5):1159–66.

    Article  Google Scholar 

  13. von Engelhardt LV, Lahner M, Klussmann A, Bouillon B, Dàvid A, Haage P, et al. Arthroscopy vs. MRI for a detailed assessment of cartilage disease in osteoarthritis: diagnostic value of MRI in clinical practice. BMC Musculoskelet Disord. 2010;11:75.

    Article  Google Scholar 

  14. Kijowski R, Blankenbaker DG, Munoz Del Rio A, Baer GS, Graf BK. Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology. 2013;267(2):503–13.

    Article  PubMed  Google Scholar 

  15. Kijowski R, Blankenbaker DG, Woods MA, Shinki K, De Smet AA, Reeder SB. 3.0-T evaluation of knee cartilage by using three-dimensional IDEAL GRASS imaging: comparison with fast spin-echo imaging. Radiology. 2010;255(1):117–27.

    Article  PubMed  Google Scholar 

  16. Lee SY, Jee WH, Kim SK, Kim JM. Proton density-weighted MR imaging of the knee: fat suppression versus without fat suppression. Skelet Radiol. 2011;40(2):189–95.

    Article  Google Scholar 

  17. Lavdas E, Topalzikis T, Mavroidis P, Kyriakis I, Roka V, Kostopoulos S, et al. Comparison of PD BLADE with fat saturation (FS), PD FS and T2 3D DESS with water excitation (WE) in detecting articular knee cartilage defects. Magn Reson Imaging. 2013;31(8):1255–62.

    Article  PubMed  Google Scholar 

  18. Kohl S, Meier S, Ahmad SS, Bonel H, Exadaktylos AK, Krismer A, et al. Accuracy of cartilage-specific 3-Tesla 3D-DESS magnetic resonance imaging in the diagnosis of chondral lesions: comparison with knee arthroscopy. J Orthop Surg Res. 2015;10:191.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Masi JN, Sell CA, Phan C, Han E, Newitt D, Steinbach L, et al. Cartilage MR imaging at 3.0 versus that at 1.5 T: preliminary results in a porcine model. Radiology. 2005 Jul;236(1):140–50.

    Article  PubMed  Google Scholar 

  20. Link TM, Sell CA, Masi JN, Phan C, Newitt D, Lu Y, et al. 3.0 vs 1.5 T MRI in the detection of focal cartilage pathology—ROC analysis in an experimental model. Osteoarthr Cartil. 2006 Jan;14(1):63–70.

    Article  CAS  PubMed  Google Scholar 

  21. Barr C, Bauer JS, Malfair D, Ma B, Henning TD, Steinbach L, et al. MR imaging of the ankle at 3 Tesla and 1.5 Tesla: protocol optimization and application to cartilage, ligament and tendon pathology in cadaver specimens. Eur Radiol. 2007;17(6):1518–28.

    Article  PubMed  Google Scholar 

  22. Kijowski R, Blankenbaker DG, Davis KW, Shinki K, Kaplan LD, De Smet AA. Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint 1. Radiology. 2009;250(3):839–48.

    Article  PubMed  Google Scholar 

  23. Van Dyck P, Kenis C, Vanhoenacker FM, Lambrecht V, Wouters K, Gielen JL, et al. Comparison of 1.5- and 3-T MR imaging for evaluating the articular cartilage of the knee. Knee Surg Sports Traumatol Arthrosc. 2014;22(6):1376–84.

    PubMed  Google Scholar 

  24. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy. 1997;13(4):456–60.

    Article  CAS  PubMed  Google Scholar 

  25. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977 Mar;33(1):159–74.

    Article  CAS  PubMed  Google Scholar 

  26. Wong S, Steinbach L, Zhao J, Stehling C, Ma CB, Link TM. Comparative study of imaging at 3.0 T versus 1.5 T of the knee. Skelet Radiol. 2009;38(8):761–9.

    Article  Google Scholar 

  27. Omoumi P, Michoux N, Larbi A, Lacoste L, Lecouvet FE, Perlepe V, et al. Multirater agreement for grading the femoral and tibial cartilage surface lesions at CT arthrography and analysis of causes of disagreement. Eur J Radiol. 2017;88:95–101.

    Article  PubMed  Google Scholar 

  28. Palazzetti V, Guidi F, Ottaviani L, Valeri G, Baldassarre S, Giuseppetti GM. Analysis of mammographic diagnostic errors in breast clinic. Radiol Med. 2016;121(11):828–33.

    Article  CAS  PubMed  Google Scholar 

  29. Berbaum KS, Krupinski EA, Schartz KM, Caldwell RT, Madsen MT, Hur S, et al. Satisfaction of search in chest radiography 2015. Acad Radiol. 2015;22(11):1457–65.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schartz KM, Madsen MT, Kim J, Ohashi R, Ohashi K, El-Khoury GY, et al. Trauma in CT: the role of severe injury on satisfaction of search revised. J Am Coll Radiol. 2016;13(8):973–978.e4.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Marx RG, Connor J, Lyman S, Amendola A, Andrish JT, Kaeding C, et al. Multirater agreement of arthroscopic grading of knee articular cartilage. Am J Sports Med. 2005;33(11):1654–7.

    Article  PubMed  Google Scholar 

  32. Acebes C, Roman-Blas JA, Delgado-Baeza E, Palacios I, Herrero-Beaumont G. Correlation between arthroscopic and histopathological grading systems of articular cartilage lesions in knee osteoarthritis. Osteoarthr Cartil. 2009;17(2):205–12.

    Article  CAS  PubMed  Google Scholar 

  33. Cameron ML, Briggs KK, Steadman JR. Reproducibility and reliability of the outerbridge classification for grading chondral lesions of the knee arthroscopically. Am J Sports Med. 2003;31(1):83–6.

    Article  PubMed  Google Scholar 

  34. Sando MJ, Rajaee SS, Liu JP, Banffy M, Limpisvasti O, Crues JV. Identifying hidden zones of the far posterior cartilage of the femoral Condyles not visible during knee arthroscopy. 2017;W1–6.

  35. Fritz J, Janssen P, Gaissmaier C, Schewe B, Weise K. Articular cartilage defects in the knee-basics, therapies and results. Injury. 2008;39(1 SUPPL):50–7.

    Article  Google Scholar 

  36. Kumagai K, Akamatsu Y, Kobayashi H, Kusayama Y, Koshino T, Saito T. Factors affecting cartilage repair after medial opening-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc. 2017;25(3):9–14.

    Article  Google Scholar 

  37. Stevens KJ, Busse RF, Han E, Brau ACS, Beatty PJ, Beaulieu CF, et al. Ankle: isotropic MR imaging with 3D-FSE-cube—initial experience in healthy volunteers. Radiology. 2008;249(3):1026–33.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Van Dyck P, Gielen JL, Vanhoenacker FM, De Smet E, Wouters K, Dossche L, et al. Diagnostic performance of 3D SPACE for comprehensive knee joint assessment at 3 T. Insights Imaging. 2012;3(6):603–10.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen CA, Kijowski R, Shapiro LM, Tuite MJ, Davis KW, Klaers JL, et al. Cartilage morphology at 3.0T: assessment of three-dimensional magnetic resonance imaging techniques. J Magn Reson Imaging. 2010;32(1):173–83.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Crema MD, Nogueira-Barbosa MH, Roemer FW, Marra MD, Niu J, Chagas-Neto FA, et al. Three-dimensional turbo spin-echo magnetic resonance imaging (MRI) and semiquantitative assessment of knee osteoarthritis: comparison with two-dimensional routine MRI. Osteoarthr Cartil. 2013;21(3):428–33.

    Article  CAS  PubMed  Google Scholar 

  41. Friedrich KM, Reiter G, Kaiser B, Mayerhöfer M, Deimling M, Jellus V, et al. High-resolution cartilage imaging of the knee at 3 T: basic evaluation of modern isotropic 3D MR-sequences. Eur J Radiol. 2011;78(3):398–405.

    Article  PubMed  Google Scholar 

  42. Schaefer FKW, Kurz B, Schaefer PJ, Fuerst M, Hedderich J, Graessner J, et al. Accuracy and precision in the detection of articular cartilage lesions using magnetic resonance imaging at 1.5 Tesla in an in vitro study with orthopedic and histopathologic correlation. Acta Radiol. 2007;48(10):1131–7.

    Article  CAS  PubMed  Google Scholar 

  43. Kijowski R, Gold GE. Routine 3D magnetic resonance imaging of joints. J Magn Reson Imaging. 2011;33(4):758–71.

    Article  PubMed  Google Scholar 

  44. Notohamiprodjo M, Horng A, Kuschel B, Paul D, Li G, Raya JG, et al. 3D-imaging of the knee with an optimized 3D-FSE-sequence and a 15-channel knee-coil. Eur J Radiol. 2012;81(11):3441–9.

    Article  PubMed  Google Scholar 

  45. Van Dyck P, Vanhevel F, Vanhoenacker FM, Wouters K, Grodzki DM, Gielen JL, et al. Morphological MR imaging of the articular cartilage of the knee at 3 T—comparison of standard and novel 3D sequences. Insights Imaging. 2015;6(3):285–93.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yoshioka H, Stevens K, Hargreaves BA, Steines D, Genovese M, Dillingham MF, et al. Magnetic resonance imaging of articular cartilage of the knee: comparison between fat-suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging, and fat-suppressed three-dimensional DEFT imaging, and correlation with arthroscopy. J Magn Reson Imaging. 2004;20(5):857–64.

    Article  PubMed  Google Scholar 

  47. Kijowski R, Davis KW, Woods MA, Lindstrom MJ, De Smet AA, Gold GE, et al. Knee joint: comprehensive assessment with 3D isotropic resolution fast spin-echo MR imaging—diagnostic performance compared with that of conventional MR imaging at 3.0 T. Radiology. 2009;252(2):486–95.

    Article  PubMed  Google Scholar 

  48. Ristow O, Steinbach L, Sabo G, Krug R, Huber M, Rauscher I, et al. Isotropic 3D fast spin-echo imaging versus standard 2D imaging at 3.0 T of the knee—image quality and diagnostic performance. Eur Radiol. 2009;19(5):1263–72.

    Article  PubMed  Google Scholar 

  49. Milewski MD, Smitaman E, Moukaddam H, Katz LD, Essig DA, Medvecky MJ, et al. Comparison of 3D vs. 2D fast spin echo imaging for evaluation of articular cartilage in the knee on a 3 T system scientific research. Eur J Radiol. 2012;81(7):1637–43.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob C. Mandell.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandell, J.C., Rhodes, J.A., Shah, N. et al. Routine clinical knee MR reports: comparison of diagnostic performance at 1.5 T and 3.0 T for assessment of the articular cartilage. Skeletal Radiol 46, 1487–1498 (2017). https://doi.org/10.1007/s00256-017-2714-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-017-2714-6

Keywords

Navigation