Skip to main content

Advertisement

Log in

Advanced metal artifact reduction MRI of metal-on-metal hip resurfacing arthroplasty implants: compressed sensing acceleration enables the time-neutral use of SEMAC

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

Compressed sensing (CS) acceleration has been theorized for slice encoding for metal artifact correction (SEMAC), but has not been shown to be feasible. Therefore, we tested the hypothesis that CS-SEMAC is feasible for MRI of metal-on-metal hip resurfacing implants.

Materials and methods

Following prospective institutional review board approval, 22 subjects with metal-on-metal hip resurfacing implants underwent 1.5 T MRI. We compared CS-SEMAC prototype, high-bandwidth TSE, and SEMAC sequences with acquisition times of 4–5, 4–5 and 10–12 min, respectively. Outcome measures included bone-implant interfaces, image quality, periprosthetic structures, artifact size, and signal- and contrast-to-noise ratios (SNR and CNR). Using Friedman, repeated measures analysis of variances, and Cohen’s weighted kappa tests, Bonferroni-corrected p-values of 0.005 and less were considered statistically significant.

Results

There was no statistical difference of outcomes measures of SEMAC and CS-SEMAC images. Visibility of implant-bone interfaces and pseudocapsule as well as fat suppression and metal reduction were “adequate” to “good” on CS-SEMAC and “non-diagnostic” to “adequate” on high-BW TSE (p < 0.001, respectively). SEMAC and CS-SEMAC showed mild blur and ripple artifacts. The metal artifact size was 63 % larger for high-BW TSE as compared to SEMAC and CS-SEMAC (p < 0.0001, respectively). CNRs were sufficiently high and statistically similar, with the exception of CNR of fluid and muscle and CNR of fluid and tendon, which were higher on intermediate-weighted high-BW TSE (p < 0.005, respectively).

Conclusion

Compressed sensing acceleration enables the time-neutral use of SEMAC for MRI of metal-on-metal hip resurfacing implants when compared to high-BW TSE and image quality similar to conventional SEMAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Issa K, Palich A, Tatevossian T, Kapadia BH, Naziri Q, Mont MA. The outcomes of hip resurfacing compared to standard primary total hip arthroplasty in men. BMC Musculoskelet Disord. 2013;14:161.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Willert HG, Buchhorn GH, Fayyazi A, Flury R, Windler M, Koster G, et al. Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints: a clinical and histomorphological study. J Bone Joint Surg Am. 2005;87(1):28–36.

    Article  PubMed  Google Scholar 

  3. Campbell P, Ebramzadeh E, Nelson S, Takamura K, De Smet K, Amstutz HC. Histological features of pseudotumor-like tissues from metal-on-metal hips. Clin Orthop Relat Res. 2010;468(9):2321–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Traumatology EFoNAoOa. Consensus statement “Current evidence on the management of metal-on-metal bearings” 2012. [Cited July 2016]. Available from: https://www.efort.org/wp-content/uploads/2013/10/2012_05_10_MoM_Consensus_statement1.pdf.

  5. Administration USFaD. Concerns about metal-on-metal hip implants 2016 [Cited July 2016]. Available from: http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/ImplantsandProsthetics/MetalonMetalHipImplants/ucm241604.htm.

  6. Nawabi DH, Hayter CL, Su EP, Koff MF, Perino G, Gold SL, et al. Magnetic resonance imaging findings in symptomatic versus asymptomatic subjects following metal-on-metal hip resurfacing arthroplasty. J Bone Joint Surg Am. 2013;95(10):895–902.

    Article  PubMed  Google Scholar 

  7. Nawabi DH, Gold S, Lyman S, Fields K, Padgett DE, Potter HG. MRI predicts ALVAL and tissue damage in metal-on-metal hip arthroplasty. Clin Orthop Relat Res. 2014;472(2):471–81.

    Article  PubMed  Google Scholar 

  8. Lazik A, Landgraeber S, Schulte P, Kraff O, Lauenstein TC, Theysohn JM. Usefulness of metal artifact reduction with WARP technique at 1.5 and 3T MRI in imaging metal-on-metal hip resurfacings. Skelet Radiol. 2015;44(7):941–51.

    Article  Google Scholar 

  9. Fritz J, Lurie B, Miller TT, Potter HG. MR imaging of hip arthroplasty implants. Radiographics. 2014;34(4):E106–32.

    Article  PubMed  Google Scholar 

  10. Lu W, Pauly KB, Gold GE, Pauly JM, Hargreaves BA. SEMAC: slice encoding for metal artifact correction in MRI. Magn Reson Med. 2009;62(1):66–76.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sutter R, Ulbrich EJ, Jellus V, Nittka M, Pfirrmann CW. Reduction of metal artifacts in patients with total hip arthroplasty with slice-encoding metal artifact correction and view-angle tilting MR imaging. Radiology. 2012;265(1):204–14.

    Article  PubMed  Google Scholar 

  12. Muller GM, Lundin B, von Schewelov T, Muller MF, Ekberg O, Mansson S. Evaluation of metal artifacts in clinical MR images of patients with total hip arthroplasty using different metal artifact-reducing sequences. Skelet Radiol. 2015;44(3):353–9.

    Article  Google Scholar 

  13. Fritz J, Lurie B, Potter HG. MR imaging of knee arthroplasty implants. Radiographics. 2015;35(5):1483–501.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ai T, Padua A, Goerner F, Nittka M, Gugala Z, Jadhav S, et al. SEMAC-VAT and MSVAT-SPACE sequence strategies for metal artifact reduction in 1.5T magnetic resonance imaging. Invest Radiol. 2012;47(5):267–76.

    Article  CAS  PubMed  Google Scholar 

  15. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95.

    Article  PubMed  Google Scholar 

  16. Koch KM, Lorbiecki JE, Hinks RS, King KF. A multispectral three-dimensional acquisition technique for imaging near metal implants. Magn Reson Med. 2009;61(2):381–90.

    Article  PubMed  Google Scholar 

  17. Nittka MOR, Rybak LD, Block KT, Geppert C, Sodickson DK, Recht MP, editor Highly accelerated SEMAC Metal implant imaging using joint compressed sensing and parallel imaging. 21st Annual Meeting of ISMRM; 2013; Salt Lake City.

  18. Ulbrich EJ, Sutter R, Aguiar RF, Nittka M, Pfirrmann CW. STIR sequence with increased receiver bandwidth of the inversion pulse for reduction of metallic artifacts. AJR Am J Roentgenol. 2012;199(6):W735–42.

    Article  PubMed  Google Scholar 

  19. Fritz J, Raithel E, Thawait GK, Gilson W, Papp DF. Six-fold acceleration of high-spatial resolution 3D SPACE MRI of the knee through incoherent k-space undersampling and iterative reconstruction-first experience. Invest Radiol. 2016;51(6):400–9.

    Article  PubMed  Google Scholar 

  20. Stalder AF, Schmidt M, Quick HH, Schlamann M, Maderwald S, Schmitt P, et al. Highly undersampled contrast-enhanced MRA with iterative reconstruction: integration in a clinical setting. Magn Reson Med. 2015;74(6):1652–60.

    Article  CAS  PubMed  Google Scholar 

  21. DeLee JG, Charnley J. Radiological demarcation of cemented sockets in total hip replacement. Clin Orthop Relat Res. 1976;121:20–32.

    PubMed  Google Scholar 

  22. Gruen TA, McNeice GM, Amstutz HC. “Modes of failure” of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res. 1979;141:17–27.

    PubMed  Google Scholar 

  23. den Harder JC, van Yperen GH, Blume UA, Bos C. Ripple artifact reduction using slice overlap in slice encoding for metal artifact correction. Magn Reson Med. 2015;73(1):318–24.

    Article  Google Scholar 

  24. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.

    Article  CAS  PubMed  Google Scholar 

  25. Echavarria-Heras H, Leal-Ramirez C, Villa-Diharce E, Castillo O. Using the value of Lin’s concordance correlation coefficient as a criterion for efficient estimation of areas of leaves of eelgrass from noisy digital images. Source Code Biol Med. 2014;9(1):29.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Deligianni X, Bieri O, Elke R, Wischer T, Egelhof T. Optimization of scan time in MRI for total hip prostheses: SEMAC tailoring for prosthetic implants containing different types of metals. Röfo. 2015;187(12):1116–22.

    CAS  PubMed  Google Scholar 

  27. Mansson S, Muller GM, Wellman F, Nittka M, Lundin B. Phantom based qualitative and quantitative evaluation of artifacts in MR images of metallic hip prostheses. Phys Med. 2015;31(2):173–8.

    Article  PubMed  Google Scholar 

  28. Hargreaves BA, Chen W, Lu W, Alley MT, Gold GE, Brau AC, et al. Accelerated slice encoding for metal artifact correction. J Magn Reson Imaging. 2010;31(4):987–96.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jungmann PM, Ganter C, Schaeffeler CJ, Bauer JS, Baum T, Meier R, et al. View-angle tilting and slice-encoding metal artifact correction for artifact reduction in MRI: experimental sequence optimization for orthopaedic tumor endoprostheses and clinical application. PLoS One. 2015;10(4), e0124922.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Koch KM, Brau AC, Chen W, Gold GE, Hargreaves BA, Koff M, et al. Imaging near metal with a MAVRIC-SEMAC hybrid. Magn Reson Med. 2011;65(1):71–82.

    Article  CAS  PubMed  Google Scholar 

  31. Muller GM, Mansson S, Muller MF, von Schewelov T, Nittka M, Ekberg O, et al. MR imaging with metal artifact-reducing sequences and gadolinium contrast agent in a case-control study of periprosthetic abnormalities in patients with metal-on-metal hip prostheses. Skelet Radiol. 2014;43(8):1101–12.

    Article  Google Scholar 

  32. Schmidt MA, Panek R, Colgan R, Hughes J, Sohaib A, Saran F, et al. Slice Encoding for Metal Artefact Correction in magnetic resonance imaging examinations for radiotherapy planning. Radiother Oncol. 2016.

  33. Fritz J, Lurie B, Miller TT. Imaging of hip arthroplasty. Semin Musculoskelet Radiol. 2013;17(3):316–27.

    Article  PubMed  Google Scholar 

  34. Reeder SB, Wintersperger BJ, Dietrich O, Lanz T, Greiser A, Reiser MF, et al. Practical approaches to the evaluation of signal-to-noise ratio performance with parallel imaging: application with cardiac imaging and a 32-channel cardiac coil. Magn Reson Med. 2005;54(3):748–54.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Fritz.

Ethics declarations

Disclosure of potential conflicts of Interest

This study was funded by Siemens Healthcare (grant number 112627). Jan Fritz received institutional research funds and speaker's honorarium from Siemens Healthcare USA and serves on the scientific advisory board of Siemens Healthcare USA and Alexion Pharmaceuticals, Inc. Benjamin Fritz and Gaurav K Thawait declare no potential conflicts of interest. Esther Raithel is an employee of Siemens Healthcare GmbH. Wesley D Gilson is an employee of Siemens Healthcare USA. Matthias Nittka is an employee of Siemens Healthcare GmbH. Dr Mont is a paid consultant for and receives royalties from Stryker, DJ Orthopaedics, Sage, TissueGene, OnGoing Care Solutions, Microport, Orthosensor, Medical Compression Systems, Johnson & Johnson, Pacira Pharmaceuticals, and Merz.

Grant support

Institutional research grant by Siemens Healthcare USA

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fritz, J., Fritz, B., Thawait, G.K. et al. Advanced metal artifact reduction MRI of metal-on-metal hip resurfacing arthroplasty implants: compressed sensing acceleration enables the time-neutral use of SEMAC. Skeletal Radiol 45, 1345–1356 (2016). https://doi.org/10.1007/s00256-016-2437-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-016-2437-0

Keywords

Navigation