Skip to main content

Advertisement

Log in

Femoral condyle insufficiency fractures: associated clinical and morphological findings and impact on outcome

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To determine the characteristics of femoral condyle insufficiency fracture (FCIF) lesions and their relative associations with the risk of clinical progression.

Materials and methods

This HIPAA-compliant retrospective study was approved by our Institutional Review Board. Seventy-three patients (age range, 19–95) were included after excluding patients with post-traumatic fractures, bone marrow infarct, osteochondritis dissecans, or underlying tumor. Two board-certified musculoskeletal radiologists classified morphologic findings including lesion diameter, associated bone marrow edema pattern, and associated cartilage/meniscus damage. Electronic medical charts were evaluated for symptoms, risk factors, and longitudinal outcomes, including total knee arthroplasty (TKA). Imaging characteristics were correlated with clinical findings, and comparison of outcome groups was performed using a regression model adjusted for age.

Results

The majority of patients with FCIF were women (64.4 %, 47/73), on average 10 years older than men (66.28 ± 15.86 years vs. 56.54 ± 10.39 years, p = 0.005). The most common location for FCIF was the central weight-bearing surface of the medial femoral condyle; overlying full thickness cartilage loss (75.7 %, 53/70) and ipsilateral meniscal injury (94.1 %, 64/68) were frequently associated. Clinical outcomes were variable, with 23.9 % (11/46) requiring TKA. Cartilage WORMS score, adjacent cartilage loss, and contralateral meniscal injury, in addition to decreased knee range of motion at presentation, were significantly associated with progression to TKA (p < 0.05).

Conclusions

FCIF are frequently associated with overlying cartilage loss and ipsilateral meniscal injury. The extent of cartilage loss and meniscal damage, in addition to loss of knee range of motion at the time of presentation, are significantly associated with clinical progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahlback S, Bauer GC, Bohne WH. Spontaneous osteonecrosis of the knee. Arthritis Rheum. 1968;11(6):705–33.

    Article  CAS  PubMed  Google Scholar 

  2. Yamamoto T, Bullough PG. Spontaneous osteonecrosis of the knee: the result of subchondral insufficiency fracture. J Bone Joint Surg Am. 2000;82(6):858–66.

    CAS  PubMed  Google Scholar 

  3. Jones JPJ. Fat embolism, intravascular coagulation, and osteonecrosis. Clin Orthop Relat Res. 1993;292:294–308.

    PubMed  Google Scholar 

  4. Yamamoto T, Bullough PG. Subchondral insufficiency fracture of the femoral head: a differential diagnosis in acute onset of coxarthrosis in the elderly. Arthritis Rheum. 1999;42(12):2719–23.

    Article  CAS  PubMed  Google Scholar 

  5. Kattapuram TM, Kattapuram SV. Spontaneous osteonecrosis of the knee. Eur J Radiol. 2008;67(1):42–8.

    Article  PubMed  Google Scholar 

  6. Ramnath RR, Kattapuram SV. MR appearance of SONK-like subchondral abnormalities in the adult knee: SONK redefined. Skelet Radiol. 2004;33(10):575–81.

    Article  Google Scholar 

  7. Yao L, Stanczak J, Boutin RD. Presumptive subarticular stress reactions of the knee: MRI detection and association with meniscal tear patterns. Skelet Radiol. 2004;33(5):260–4.

    Article  Google Scholar 

  8. Mears SC, McCarthy EF, Jones LC, Hungerford DS, Mont MA. Characterization and pathological characteristics of spontaneous osteonecrosis of the knee. Iowa Orthop J. 2009;29:38–42.

    PubMed Central  PubMed  Google Scholar 

  9. Adriaensen ME, Mulhall KJ, Borghans RA, Magill P, Kavanagh EC. Transient osteoporosis of the hip and spontaneous osteonecrosis of the knee: a common aetiology? Ir J Med Sci. 2012;181(3):341–3.

    Article  CAS  PubMed  Google Scholar 

  10. Akamatsu Y, Mitsugi N, Hayashi T, Kobayashi H, Saito T. Low bone mineral density is associated with the onset of spontaneous osteonecrosis of the knee. Acta Orthop. 2012;83(3):249–55.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Breer S, Oheim R, Krause M, Marshall RP, Amling M, Barvencik F. Spontaneous osteonecrosis of the knee (SONK). Knee Surg Sports Traumatol Arthrosc. 2013;21(2):340–5.

    Article  CAS  PubMed  Google Scholar 

  12. Kraenzlin ME, Graf C, Meier C, Kraenzlin C, Friedrich NF. Possible beneficial effect of bisphosphonates in osteonecrosis of the knee. Knee Surg Sports Traumatol Arthrosc. 2010;18(12):1638–44.

    Article  PubMed  Google Scholar 

  13. Langdown AJ, Pandit H, Price AJ, et al. Oxford medial unicompartmental arthroplasty for focal spontaneous osteonecrosis of the knee. Acta Orthop. 2005;76(5):688–92.

    Article  PubMed  Google Scholar 

  14. Koshino T. The treatment of spontaneous osteonecrosis of the knee by high tibial osteotomy with and without bone-grafting or drilling of the lesion. J Bone Joint Surg Am. 1982;64(1):47–58.

    CAS  PubMed  Google Scholar 

  15. Jureus J, Lindstrand A, Geijer M, Robertsson O, Tagil M. The natural course of spontaneous osteonecrosis of the knee (SPONK): a 1- to 27-year follow-up of 40 patients. Acta Orthop. 2013;84(4):410–4.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Myers TG, Cui Q, Kuskowski M, Mihalko WM, Saleh KJ. Outcomes of total and unicompartmental knee arthroplasty for secondary and spontaneous osteonecrosis of the knee. J Bone Joint Surg Am. 2006;88 Suppl 3:76–82.

    Article  PubMed  Google Scholar 

  17. Jans LBO, Jaremko JL, Ditchfield M, Huysse WC, Verstraete KL. MRI differentiates femoral condylar ossification evolution from osteochondritis dissecans. A new sign. Eur Radiol. 2011;21:1170–9.

    Article  PubMed  Google Scholar 

  18. Campbell WI, Lewis S. Visual analogue measurement of pain. Ulster Med J. 1990;59(2):149–54.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Scuderi GR, Bourne RB, Noble PC, Benjamin JB, Lonner JH, Scott WN. The new knee society knee scoring system. Clin Orthop Relat Res. 2012;470(1):3–19.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Filardo G, Kon E, Tentoni F, et al. Anterior cruciate ligament injury: post-traumatic bone marrow oedema correlates with long-term prognosis. Int Orthop 2015.

  21. Outerbridge RE. The etiology of chondromalacia patellae. J Bone Joint Surg (Br). 1961;43-B:752–7.

    CAS  Google Scholar 

  22. Johnson-Nurse C, Dandy DJ. Fracture-separation of articular cartilage in the adult knee. J Bone Joint Surg (Br). 1985;67(1):42–3.

    CAS  Google Scholar 

  23. Peterfy CG, Guermazi A, Zaim S, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthr Cartil. 2004;12(3):177–90.

    Article  CAS  PubMed  Google Scholar 

  24. Hunter DJ, Guermazi A, Lo GH, et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthr Cartil. 2011;19:990–1002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Atukorala I, Kwoh CK, Guermazi A, et al. Synovitis in knee osteoarthritis: a precursor of disease? Ann Rheum Dis 2014:1–6.

  26. Taneja AK, Miranda FC, Braga CAP, et al. MRI features of the anterolateral ligament of the knee. Skelet Radiol. 2015;44:403–10.

    Article  Google Scholar 

  27. Kanis J, on behalf of the World Health Organization Scientific Group. World Health Organization Scientific Group on the Assessment of Osteoporosis at Primary Health Care Level. http://www.who.int/chp/topics/Osteoporosis.pdf. 2007. April 10. 2015.

  28. Lee CNY, Lam SC, Tsang AYK, Ng BTY, Leung JCY, Chong ACY. Preliminary investigation on prevalence of osteoporosis and osteopenia: should we tune our focus on healthy adults? Jpn J Nurs Sci. 2014:1–17.

  29. Häussler B, Gothe H, Göl D, Glaeske G, Pientka L, Felsenberg D. Epidemiology, treatment and costs of osteoporosis in Germany—the BoneEVA study. Osteoporos Int. 2007;18:77–84.

    Article  PubMed  Google Scholar 

  30. Nelson FR, Craig J, Francois H, Azuh O, Oyetakin-White P, King B. Subchondral insufficiency fractures and spontaneous osteonecrosis of the knee may not be related to osteoporosis. Arch Osteoporos 2014;9(1):2014 Sep 19.

  31. Dalzell N, Kaptoge S, Morris N, et al. Bone micro-architecture and determinants of strength in the radius and tibia: age-related changes in a population-based study of normal adults measured with high-resolution pQCT. Osteoporos Int. 2009;20:1683–94.

    Article  CAS  PubMed  Google Scholar 

  32. Mueller TL, van Lenthe GH, Stauber M, Gratzke C, Eckstein F, Müller R. Regional, age and gender differences in architectural measures of bone quality and their correlation to bone mechanical competence in the human radius of an elderly population. Bone. 2008;45:882–91.

    Article  Google Scholar 

  33. Yamamoto T, Takabatake K, Iwamoto Y. Subchondral insufficiency fracture of the femoral head resulting in rapid destruction of the hip joint: a sequential radiographic study. AJR Am J Roentgenol. 2002;178(2):435–7.

    Article  PubMed  Google Scholar 

  34. Yamamoto T, Bullough PG. The role of subchondral insufficiency fracture in rapid destruction of the hip joint: a preliminary report. Arthritis Rheum. 2000;43(11):2423–7.

    Article  CAS  PubMed  Google Scholar 

  35. Lecouvet FE, van de Berg BC, Maldague BE, et al. Early irreversible osteonecrosis versus transient lesions of the femoral condyles: prognostic value of subchondral bone and marrow changes on MR imaging. AJR Am J Roentgenol. 1998;170(1):71–7.

    Article  CAS  PubMed  Google Scholar 

  36. Pan J, Bialat JB, Joseph T, et al. Knee cartilage T2 characteristics and evolution in relation to morphologic abnormalities detected at 3-T MR imaging: a longitudinal study of the normal control cohort from the Osteoarthritis Initiative. Radiology. 2011;261:507–15.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Institute of Arthritis and Musculoskeletal and Skin Diseases, a branch of the National Institutes of Health, under grant no. P50 AR060752.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren A. Hackney.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plett, S.K., Hackney, L.A., Heilmeier, U. et al. Femoral condyle insufficiency fractures: associated clinical and morphological findings and impact on outcome. Skeletal Radiol 44, 1785–1794 (2015). https://doi.org/10.1007/s00256-015-2234-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-015-2234-1

Keywords

Navigation